ЭЙНШТЕЙН

ЭЙНШТЕЙН (Einstein) Альберт (1879-1955) - выдающийся мыслитель 20 в., создатель физической теории пространства, времени и гравитации


Смотреть больше слов в «Энциклопедии Истории философии»

ЭЙНШТЕЙН →← ЭЙДОС

Смотреть что такое ЭЙНШТЕЙН в других словарях:

ЭЙНШТЕЙН

эйнштейн сущ., кол-во синонимов: 10 • астероид (579) • букварь (14) • единица (830) • золотая голова (9) • мегамозг (5) • мозгляк (25) • умник (37) • умняра (1) • умняшка (3) • физик (22) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: астероид, единица... смотреть

ЭЙНШТЕЙН

ЭЙНШТЕЙН(Einstein) Альберт (1879-1955) - выдающийся мыслитель 20 в., создатель физической теории пространства, времени и гравитации, для которой истори... смотреть

ЭЙНШТЕЙН

ЭЙНШТЕЙН (Einstein) Альберт (1879-1955) - выдающийся мыслитель 20 в., создатель физической теории пространства, времени и гравитации, для которой исторически утвердилось название теория относительности Э.. Нобелевская премия по физике за заслуги в области теоретической физики и особенно за открытие законов фотоэффекта (1921). Член научных обществ многих стран мира, в том числе член Прусской Акаде- мии наук (1913-1933), почетный иностранный член Академии наук СССР (с 1927). Родился в г. Ульм (Германия) в семье инженера, переехавшего в Швейцарию (1893). Окончил Политехнический институт в Цюрихе (1900). Преподаватель гимназии (1900-1902), эксперт Федерального Бюро патентов в Берне (1902-1909), профессор Университета Цюриха (1909-1911), занимал кафедру теоретической физики в Немецком университете в Праге (1911-1912), профессор Политехнического института в Цюрихе (1912-1914), директор Физического института и профессор Университета Берлина (1914- 1933). В 1933 Э. эмигрировал в США, отказавшись от германского подданства и членства в Прусской Академии наук в связи с преследованиями его со стороны идеологов национал-социализма как ученого, общественного деятеля и еврея. С 1933 и до ухода из жизни Э. - профессор Принстонского института фундаментальных исследований. В конце 1940-х отказался от предложения стать первым Президентом государства Израиль. Антивоенную деятельность Э. начал в начале 1930-х совместно с А.Барбюсом, М.Горьким, Р.Ролланом. Э. - один из лидеров Пагуошского движения, соавтор Манифеста Рассела - Э. (1934). Известны также его высказывания против применения ядерной энергии в военных целях. Главные труды: К электродинамике движущихся сред (1905), Вокруг теории относительности (1921), О современном кризисе теоретической физики (1922), Мир, каким я его вижу (1934), Физика и реальность (1936), Эволюция физики (1940, в соавт. с Л.Инфельдом), Сущность теории относительности (1945) и др. В бернском периоде своей деятельности Э. установил глубокую связь между диффузией и броуновским движением, разработав к 1905 фундаментальную (молекулярно-статистическую) теорию флуктуационных процессов. В квантовой теории Э. выдвинул основополагающую концепцию о том, что световое поле представляет собой совокупность элементарных световых полей фотонов или квантов света, независимо излученных телами и независимо же поглощаемых ими, тем самым введя фотонную концепцию квантовой структуры поля излучения (1905), что позволило ему на этой основе открыть законы фотоэффекта и люминесценции. И только после создания целостной теории квантовой механики и квантовой электродинамики (1925-1928) было снято противоречие между волновой природой и квантовой структурой светового излучения. На основе фотонной теории Э. к проблемам статистической физики были применены закономерности квантовой теории, что привело его к созданию квантовой статистики и решению многих проблем термодинамики (1907). В 1917 Э. выдвинул концепцию индуцированного светового излучения, в котором вероятность испускания фотона возбужденным атомом суще- ственно зависит от количества таких фотонов, уже имеющихся вблизи атома. Выдающимся достижением Э. явилось создание физической теории пространства, времени и гравитации - теории относительности. (Вплоть до конца 19 в. было принято считать, что объекты материального мира состоят из материальных точек, которые взаимодействуют между собой. Под воздействием приложенных сил материальные точки находятся в непрекращающемся движении, к которому сводятся все наблюдаемые явления. Такую концепцию мира Э. считал тесно связанной с наивным реализмом, сторонники которого полагали, по его мнению, что объекты внешнего мира даются человеку непосредственно чувственным восприятием. Однако введение материальных точек означало шаг к более изощренному реализму, потому что введение подобных атомистических элементов не основано на непосредственных наблюдениях.) Господствовавшие до Э. ньютонианские представления конца 17 в. реально не противоречили фактам действительности до тех пор, пока исследователи в физических науках не приступили к изучению объектов, движущихся со скоростями V, для которых невозможно пренебречь величинами порядка (V/С)2, где С - скорость света. Результаты экспериментов, противоречившие теориям классической физики (например, опыт Майкельсона измерения скорости света и др.), Э. объяснил на основании общих свойств пространства и времени, показав при этом, что одним из следствий этих свойств является изменение протяженностей материальных объектов и промежутков времени при изменениях состояния движения материальных объектов. Таким образом, следующий шаг в процессе изменения физической картины мира был и сделан самим Э. в специальной теории относительности (далее - СТО). Э. показал, что для согласования теоретических представлений с опытом следует отказаться от понятий абсолютного пространства (эфира) и времени, и ввел понятие относительного характера длины, интервала времени и одновременности. В основу СТО легли два постулата: принцип относительности и принцип постоянства скорости света. Принцип относительности состоит в том, что все законы природы одинаковы во всех инерциальных системах отсчета, т.е. в системах, движущихся с постоянной скоростью. Этот принцип имел экспериментальное обоснование, состоявшее в отрицательном результате опыта Майкельсона, в котором он пытался обнаружить движение Земли относительно абсолютного пространства (эфира). Принцип постоянства скорости света был введен Э. без экспериментального обоснования. Э. показал, что для согласования этих двух постулатов следует отказаться от идеи о абсолютном характере одновременности, длин и промежутков времени, которые, как оказалось, зависят от состояния системы отсче- та. Таким образом, понятие эфира и абсолютного пространства стали ненужными. В рамках СТО время потеряло свой абсолютный характер и стало рассматриваться как параметр, алгебраически подобный пространственным координатам. В физику было введено понятие о четырехмерном пространстве-времени. Пуанкаре в статье О динамике электрона (1905, опубликовано в 1906) независимо от Э. вывел и развил математические следствия концепции ковариантности (сохранения формы) законов при преобразованиях от одной инерциальной системы отсчета к другой (постулата относительности), поэтому СТО также называют теорией относительности Э. - Пуанкаре. Предметом СТО, согласно работе Э. К электродинамике движущихся тел, являются пространственно-временные соотношения при равномерных и прямолинейных (т.е. инерциальных) движениях систем отсчета. В СТО Э. открыл новые законы движения, сводимые к законам Ньютона только в случаях возможности пренебрежения величинами порядка (V/С)2. Там же была дана и теория оптических явлений в движущихся материальных объектах. В дополнении к СТО также была показана пропорциональность массы материального объекта заключающейся в нем энергии (широко известное соотношение E = МхС2, где E - энергия, М - масса). В своей книге Сущность теории относительности Э. писал: Мы останемся верными принципу относительности в его наиболее широком смысле, если придадим такую форму законам природы, что они окажутся применимыми в любой четырехмерной системе координат. Основное положение СТО постулирует полную равноправность всех инерциальных систем отсчета, что отвергает существование абсолютного Пространства и абсолютного Времени, концептуализированного в теории Ньютона. Абсолютный смысл имеют только некоторое сочетания неразрывно связанных Пространства и Времени. Математическим выражением этого принципа относительности является ковариантность законов природы. СТО утверждает, что все физические закономерности, имеющие объективное значение, сохраняют свое значение при переходе к любой системе отсчета (в том числе и инерциальной), если в формулировке этих законов правильно учтены свойства Пространства и Времени. В СТО ковариантность законов Пространства и Времени рассматривается как отражение их объективного свойства однородности. После СТО Э. начал исследования общих пространственно-временных отношений (в случаях несводимости изменения системы отсчета к переходу из одного инерциального движения в другое и к распространению на этот случай принципов ковариантности законов природы). Э. открыл полную эквивалентность между переходом из инерциальной системы в систему, движущуюся прямолинейно, но неравномерно, с одной стороны, и появлением нового поля гравитирования, - с другой. Поэтому проблема ковариантности оказалась полностью включена в проблему гравитации и наоборот. К 1916 Э. создал общую теорию относительности (далее - ОТО), которая была фундирована на интеграции принципов эквивалентности и относительности как релятивистская теория гравитации, где выделена неоднородность пространства-времени. Э. доказал, что в присутствии материальных объектов, создающих поле гравитации, метрика (как количественные меры пространства и времени) становится иной, чем в отсутствие таких объектов (например, время замедляется, сумма углов треугольника больше двух прямых и пр.). Переход к другой системе отсчета (движущейся, например, прямолинейно и неравномерно, т.е. неинерциально), эквивалентный введению нового поля гравитирования, соответственно изменяет метрику пространств. Лобачевский еще в первой половине 19 в. показал, что метрика реального пространства может обладать такими отклонениями от обычно принимающейся метрики Евклида (с попытками экспериментального поиска таких отклонений). В ОТО Э. нашел (физическую) причину такого отклонения, дал его математическое выражение и показал, что такие отклонения в метрике реального Пространства невозможно отрывать от соответствующих трансформаций Времени. Теория Э. о пространстве, времени и гравитации показала их неразрывную взаимосвязь, причем в ОТО не всякое гравитирование возможно полностью свести к эффектам стандартной кинематики. Уравнения гравитационного поля в ОТО дефинируют и метрику пространства-времени, и законы движения материальных объектов, являющихся полевыми источниками. Но отклонение метрики пространства от евклидовой и законов движения от законов Ньютона проявляется лишь в сильных гравитационных полях больших масс тел. Поэтому ОТО стала основой исследований проблем космологии, а СТО и квантовая теория - основой исследований структур атома, его ядра и элементарных частиц. Изменение представлений о пространстве, времени, гравитации и их взаимосвязях означало отход от теории Ньютона, предполагавшей независимое существование Пространства и Времени, в отрыве от Материи. Э. писал: согласно ньютоновской системе, физическая реальность характеризуется понятиями пространства, времени, материальной точки и силы (взаимодействия материальных точек)... После Максвелла физическая реальность мыслилась в виде непрерывных, неподдающихся механическому объяснению полей, описываемых дифференциальными уравнениями в частных производных. Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытывала физика со времен Ньютона... Нарисованной мною картине чисто фиктивного характера основных представлений научной теории не придавалось особого значения в 18 и 19 вв. Но сейчас она приобретает все большее значение по мере того, как увеличивается в нашем мышлении расстояние между фундаментальными понятиями и законами, с одной стороны, и выводами, к которым они приводят в отношении нашего опыта, с другой стороны, по мере того, как упрощается логическая структура, уменьшается число логически независимых концептуальных элементов, необходимых для поддержания структуры. (По мнению Э., основной постулат ОТО, согласно которому общие законы природы должны быть выражены через уравнения, справедливые во всех координатных системах, отнимает у пространства и времени последний остаток физической предметности, и означает, что введение координатной системы служит только для более простого описания совокупности совпадений. Общая теории относительности была подтверждена опытным путем посредством объяснения ряда наблюдаемых явлений: аномального поведения орбиты планеты Меркурий, отклонения лучей света в поле тяготения Солнца и смещения спектральных линий атомов в поле тяготения.) В книге Эволюция физики Э., фактически принимая точку зрения Канта, писал: Физические понятия суть свободные творения человеческого разума, а не определены однозначно внешним миром... В нашем стремлении познать реальность мы отчасти подобны человеку, который хочет понять механизм закрытых часов. Он видит циферблат и движущиеся стрелки... слышит тиканье, но не имеет средств открыть их корпус. ... он может нарисовать себе некую картину механизма, которая бы отвечала всему, что он наблюдает, но он никогда не может быть уверен в том, что его картина единственная, которая могла бы объяснить его наблюдения. Он никогда не будет в состоянии сравнить свою картину с реальным механизмом, и он не может даже представить себе возможность или смысл такого сравнения. М.Клайн полагал, что мы в состоянии оценить, сколь велика та часть нашей физической науки, которая была математизирована в форме геометрии... Э. подхватил их /Лобачевского, Бойяи и Римана - В.Т., C.C.I идеи, превратив наш физический мир в четырехмерный математический. Гравитация, время и материя наряду с пространством стали компонентами геометрической структуры четырехмерного пространства-времени. Так, уверенность древних греков в том, что реальный мир удобнее и понятнее всего выражать через его геометрические свойства и проникнутое духом Возрождения учение Декарта о том, что феномены материи и движения легко объяснить через геометрию пространства, получили убедительнейшее подтверждение. В исследованиях Э. всегда значительное место занимали общефилософские проблемы естествознания: Почему возможно такое превосходное соответствие математики с реальными предметами, если сама она является произведением только человеческой мысли, не связанной ни с каким опытом? Может ли человеческий разум без всякого опыта, путем одного только размышления понять свойства реальных вещей?.. Если теоремы математики прилагаются к отражению реального мира, они не точны; они точны до тех пор, пока не ссылаются на действительность... Однако, с другой стороны, верно и то, что математика вообще и геометрия в частности обязаны своим происхождением необходимости узнать что-либо о поведении реально существующих объектов (Вокруг теории относительности). При этом Э., понимавшего изопытную выводимость логических принципов и математических аксиом, интересовала прекрасная согласованность с опытом тех следствий, которые вытекали из созданных человеком принципов и аксиом. Первое собственное объяснение эффективности математики Э. предлагал еще в 1918: История показала, что из всех мыслимых построений в данный момент только одно оказывается преобладающим. Никто из тех, кто действительно углублялся в предмет, не станет отрицать, что теоретическая система практически однозначно определяется миром наблюдений, хотя никакой логический путь не ведет от наблюдений к логическим принципам теории. В этом суть того, что Лейбниц удачно назвал предустановленной гармонией. Размышления о природе математики и потере ее прежнего статуса свода общепринятых базисных истин склонили Э. к концепции созданной человеком математики: каждый, кто осмеливается взять на себя роль судьи во всем, что касается Истины и Знания, терпит крушение под смех Богов. Э. писал относительно существования внешней реальности и надежности нашего знания о ней: Вера в существование внешнего мира, независимого от воспринимающего субъекта, лежит в основе всего естествознания. Но так как чувственное восприятие дает информацию об этом внешнем мире, или о физической реальности, опосредствовано, мы можем охватить последнюю только путем рассуждений; т.е. для Э. опыт носит личностный характер и потому не может служит доказательством существования внешней реальности. Будучи убежденным в том, что конструируемая человеком математика определяется реальностью, Э. писал: Если бы даже оказалось, что мир идей нельзя вывести из опыта логическим путем, а что в определенных пределах этот мир есть порождение человеческого разума, без которого никакая наука невозможна, все же он столь же мало был бы независим от природы наших ощущений, как одежда - от формы человеческого тела. Концепция более поздних исследований Э. отражена в его книге Мир, каким я его вижу, где он отмечал: Весь предшествующий опыт убеждает нас в том, что природа представляет собой реализацию простейших математически мыслимых элементов. ...Посредством чисто математических конструкций мы можем найти те понятия и закономерные связи между ними, которые дадут нам ключ к пониманию явлений природы. Опыт может подсказать нам соответствующие математические понятия, но они ни в коем случае не могут быть выведены из него. Конечно, опыт остается единственным критерием пригодности математических конструкций физики. Но настоящее творческое начало присуще именно математике. Поэтому я считаю в известном смысле оправданной веру древних в то, что чистое мышление в состоянии постигнуть реальность. Этим тезисом Э. может только констатировать существование некоторых законов вне нас. Свое убеждение Э. основывает и на собственном широко известном неверии в то, что Бог играет в кости (а если бы это было и так, то по этому поводу еще Р.У.Эмерсон сказал, что кости Господа Бога налиты свинцом), ибо, согласно Э., Господь Бог изощрен, но не злобен. Несмотря на то, что вероятностная интерпретация квантовой механики и принцип неопределенности Гейзенберга получили широкое распространение, Э. (совместно с М.Планком и Шредингером), согласно детерминизма и причинности классической механики, выступал против основной идеи современной ему статистической квантовой теории, мотивируя это (в 1955) приближенным характером и неполнотой квантовой теории: Я не верю, что такая фундаментальная концепция может стать надлежащей основой для всей физики в целом... Я твердо убежден, что существенно статистический характер современной квантовой теории следует приписать исключительно тому, что эта теория оперирует с неполным описанием физических систем. В принстонский период (1933-1955) своей деятельности Э. занимался, в основном, развитием ОТО в направлении решения проблем космологии и единой теории поля. Однако его работы в направлении объединения поля электромагнитного с метрикой пространства-времени (аналогично полю гравитационному) оказались безуспешны. В. Ф, Тарасов, C.B. Силков<br><br><br>... смотреть

ЭЙНШТЕЙН

ЭЙНШТЕЙН         (Einstein) Альберт (14.3.1879, Ульм, Германия,— 18.4.1955, Принстон, США), один из основоположников совр. физики. В 1900 окончил по... смотреть

ЭЙНШТЕЙН

ЭЙНШТЕЙН (Einstein) Альберт (14 марта 1879, Ульм, Германия - 18 апреля 1955, Принстон, США), физик-теоретик, один из основателей современной физики, создатель теории относительности, автор основополагающих трудов по квантовой теории и статистической физике.Детство. Начальное образованиеАльберт Эйнштейн родился в старинном немецком городе Ульме, но через год семья переселилась в Мюнхен, где отец Альберта, Герман Эйнштейн, и дядя Якоб организовали небольшую компанию "Электротехническая фабрика Я. Эйнштейна и К°". Вначале дела компании, занимавшейся усовершенствованием приборов дугового освещения, электроизмерительной аппаратурой и генераторами постоянного тока, шли довольно успешно. Но в 90-х гг. 19 в., в связи с расширением строительства крупных электроцентралей и линий дальних электропередач, возник целый ряд мощных электротехнических фирм. Надеясь спасти компанию, братья Эйнштейны в 1894 перебрались в Милан, однако через два года, не выдержав конкуренции, компания прекратила свое существование.Дядя Якоб уделял много времени маленькому племяннику. "Я помню, например, что теорема Пифагора была мне показана моим дядей еще до того, как в мои руки попала священная книжечка по геометрии", - так Эйнштейн в воспоминаниях, относящихся к 1945, говорил об учебнике евклидовой геометрии. Часто дядя задавал мальчику математические задачи, и тот "испытывал подлинное счастье, когда справлялся с ними".Родители отдали Альберта сначала в католическую начальную школу, а затем в мюнхенскую классическую гимназию Луитпольда, известную как прогрессивное и весьма либеральное учебное заведение, но которую он так и не окончил, переехав вслед за семьей в Милан. И в школе, и в гимназии Альберт приобрел не лучшую репутацию. Чтение научно-популярных книг породило у юного Эйнштейна, по его собственному выражению, "прямо-таки фантастическое свободомыслие". В своих воспоминаниях М. Борн писал: "Уже в ранние годы Эйнштейн показал неукротимую волю к независимости. Он ненавидел игру в солдаты, потому что это означало насилие". Позже Эйнштейн говорил, что людям, которым доставляет удовольствие маршировать под звуки марша, головной мозг достался зря, они вполне могли бы довольствоваться одним спинным.Первый год в ЩвейцарииВ октябре 1895 шестнадцатилетний Эйнштейн пешком отправился из Милана в Цюрих, чтобы поступить в Федеральную высшую техническую школу - знаменитый Политехникум, для поступления в который не требовалось свидетельства об окончании средней школы. Блестяще сдав вступительные экзамены по математике, физике и химии, он, однако, с треском провалился по другим предметам. Ректор Политехникума, оценив незаурядные математические способности Эйнштейна, направил его для подготовки в кантональную школу в Аарау (в 20 милях к западу от Цюриха), которая в то время считалась одной из лучших в Щвейцарии. Год, проведенный в этой школе, которой руководил серьезный ученый и прекрасный педагог А. Таухшмид, оказался и очень полезным, и - по контрасту с казарменной обстановкой в Пруссии - приятным.Учеба в ПолитехникумеВыпускные экзамены в Аарау Эйнштейн сдал вполне успешно (кроме экзамена по французскому языку), что дало ему право на зачисление в Политехникум в Цюрихе. Кафедру физики там возглавлял профессор В. Г. Вебер, прекрасный лектор и талантливый экспериментатор, занимавшийся в основном вопросами электротехники. Поначалу он очень хорошо принял Эйнштейна, но в дальнейшем отношения между ними осложнились настолько, что после окончания учебы Эйнштейн некоторое время не мог устроиться на работу. В какой-то мере это объяснялось чисто научными причинами. Отличаясь консерватизмом взглядов на электромагнитные явления, Вебер не принимал теории Максвелла, представлений о поле и придерживался концепции дальнодействия. Его студенты узнавали прошлое физики, но не ее настоящее и, тем более, будущее. Эйнштейн же изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное ) и как можно экспериментально обнаружить движение относительно эфира. Он тогда не знал об опытах Майкельсона и независимо от него предложил свою интерференционную методику.Но опыты, придуманные Эйнштейном, со страстью работавшим в физическом практикуме, не имели шансов осуществиться. Преподаватели недолюбливали строптивого студента. "Вы умный малый, Эйнштейн, очень умный малый, но у вас есть большой недостаток - вы не терпите замечаний", - сказал ему как-то Вебер, и этим определялось многое. Бюро патентов. Первые шаги к признаниюПосле окончания Политехникума (1900) молодой дипломированный преподаватель физики (Эйнштейну шел тогда двадцать второй год) жил в основном у родителей в Милане и два года не мог найти постоянной работы. Только в 1902 он получил наконец, по рекомендации друзей, место эксперта в федеральном Бюро патентов в Берне. Незадолго до этого Эйнштейн сменил гражданство и стал щвейцарским подданным. Через несколько месяцев после устройства на работу он женился на своей бывшей цюрихской однокурснице Милеве Марич, родом из Сербии, которая была на четыре года старше его. В Бюро патентов, которое Эйнштейн называл "светским монастырем", он проработал семь с лишним лет, считая эти годы самыми счастливыми в жизни. Должность "патентного служки" постоянно занимала его ум различными научными и техническими вопросами, но оставляла достаточно времени для самостоятельной творческой работы. Ее результаты к середине "счастливых бернских лет" составили содержание научных статей, которые изменили облик современной физики, принесли Эйнштейну мировую славу.Броуновское движениеПервая из этих статей - "О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории", вышедшая в 1905, - была посвящена теории броуновского движения. Это явление (непрерывное беспорядочное зигзагообразное движение частичек цветочной пыльцы в жидкости), открытое в 1827 английским ботаником Р. Броуном, уже получило тогда статистическое объяснение, но теория Эйнштейна (который не знал предшествующих работ по броуновскому движению) имела законченную форму и открывала возможности количественных экспериментальных исследований. В 1908 эксперименты Ж. Б. Перрена полностью подтвердили теорию Эйнштейна, что сыграло важную роль для окончательного становления молекулярно-кинетических представлений.Кванты и фотоэффектВ том же 1905 вышла и другая работа Эйнштейна - "Об одной эвристической точке зрения на возникновение и превращение света". За пять лет до этого М. Планк показал, что спектральный состав излучения, испускаемого горячими телами, находит объяснение, если принять, что процесс излучения дискретен, то есть свет испускается не непрерывно, а дискретными порциями определенной энергии. Эйнштейн выдвинул предположение, что и поглощение света происходит теми же порциями и что вообще "однородный свет состоит из зерен энергии (световых квантов), ... несущихся в пустом пространстве со скоростью света". Эта революционная идея позволила Эйнштейну объяснить законы фотоэффекта, в частности, факт существования "красной границы", то есть той минимальной частоты, ниже которой выбивания светом электронов из вещества вообще не происходит.Идея квантов была применена Эйнштейном и к объяснению других явлений, например, флуоресценции, фотоионизации, загадочных вариаций удельной теплоемкости твердых тел, которые не могла описать классическая теория.Работы Эйнштейна, посвященные квантовой теории света, были удостоены в 1921 Нобелевской премии. Частная (специальная) теория относительностиНаибольшую известность Эйнштейну все же принесла теория относительности, изложенная им впервые в 1905, в статье "К электродинамике движущихся тел". Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики.Эйнштейн выдвинул удивительный и на первый взгляд парадоксальный постулат, что скорость света для всех наблюдателей, как бы они ни двигались, одинакова. Этот постулат (при выполнении некоторых дополнительных условий) приводит к полученным ранее Х. Лоренцем формулам для преобразований координат и времени при переходе из одной инерциальной системы отсчета в другую, движущуюся относительно первой. Но Лоренц рассматривал эти преобразования как вспомогательные, или фиктивные, не имеющие непосредственного отношения к реальному пространству и времени. Эйнштейн понял реальность этих преобразований, в частности, реальность относительности одновременности.Таким образом, принцип относительности, установленный для механики еще Галилеем, был распространен на электродинамику и другие области физики. Это привело, в частности, к установлению важного универсального соотношения между массой М, энергией Е и импульсом Р: E2= М2 c4 + P2с2 (где с - скорость света), которое можно назвать одной из теоретических предпосылок использования внутриядерной энергии.Профессорская деятельность. Приглашение в Берлин. Общая теория относительностиВ 1905 Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1909 он избран профессором Цюрихского университета, а через два года - Немецкого университета в Праге. В 1912 Эйнштейн возвратился в Цюрих, где занял кафедру в Политехникуме, но уже в 1914 принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М. Гроссмана в 1912 появилась статья "Набросок обобщенной теории относительности", а окончательная формулировка теории датируется 1915. Эта теория, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Опираясь на всем известный факт, что "тяжелая" и "инертная" массы равны, удалось найти принципиально новый подход к решению проблемы, поставленной еще И. Ньютоном: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия.Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама "геометрия" пространства - времени. Любое массивное тело, по Эйнштейну, вызывает вокруг себя "искривление" пространства, то есть делает его геометрические свойства иными, чем в геометрии Евклида, и любое другое тело, движущееся в таком "искривленном" пространстве, испытывает воздействие первого тела.Общая теория относительности привела к предсказанию эффектов, которые вскоре получили экспериментальное подтверждение. Она позволила также сформулировать принципиально новые модели, относящиеся ко всей Вселенной, в том числе и модели нестационарной (расширяющейся) Вселенной.ЭмиграцияНе без колебаний принял Эйнштейн предложение переехать в Берлин. Но возможность общения с крупнейшими немецкими учеными, в числе которых был и Планк, привлекала его.Политическая и нравственная атмосфера в Германии делалась все тягостнее, антисемитизм поднимал голову, и когда власть захватили фашисты, Эйнштейн в 1933 навсегда покинул Германию. Впоследствии в знак протеста против фашизма он отказался от германского подданства и вышел из состава Прусской и Баварской Академий наук. В берлинский период, кроме общей теории относительности, Эйнштейном была разработана статистика частиц целого спина, введено понятие вынужденного излучения, играющего важную роль в лазерной физике, предсказано (совместно с де Гаазом) явление возникновения вращательного импульса тел при их намагничивании и др. Однако, будучи одним из создателей квантовой теории, Эйнштейн не принял вероятностной интерпретации квантовой механики, полагая, что фундаментальная физическая теория не может быть статистической по своему характеру. Он нередко повторял, что "Бог не играет в кости" со Вселенной.Переехав в США, Эйнштейн занял должность профессора физики в новом институте фундаментальных исследований в Принстоне (штат Нью-Джерси). Он продолжал заниматься вопросами космологии, а также усиленно искал пути построения единой теории поля, которая бы объединила гравитацию, электромагнетизм (а возможно, и остальное). И хотя реализовать эту программу ему не удалось, это не поколебало репутации Эйнштейна как одного из величайших естествоиспытателей всех времен.В Принстоне Эйнштейн стал местной достопримечательностью. Его знали как физика с мировым именем, но для всех он был скромным, приветливым и несколько эксцентричным человеком, с которым можно было столкнуться прямо на улице. В часы досуга он любил музицировать. Начав учиться игре на скрипке в шесть лет, Эйнштейн продолжал играть всю жизнь, иногда в ансамбле с другими физиками. Ему нравился парусный спорт, который, как он полагал, необыкновенно способствует размышлениям над физическими проблемами. Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952, которое он не принял.Будучи последовательным сторонником сионизма, Эйнштейн приложил немало усилий к созданию Еврейского университета в Иерусалиме в 1925.В умах многих людей имя Эйнштейна связано с атомной проблемой. Действительно, понимая, какой трагедией для человечества могло бы оказаться создание в фашистской Германии атомной бомбы, он в 1939 направил президенту США письмо, послужившее толчком для работ в этом направлении в Америке. Но уже в конце войны его отчаянные попытки удержать политиков и генералов от преступных и безумных действий оказались тщетными. Это было самой большой трагедией его жизни.Эйнштейн скончался в Принстоне от аневризмы аорты.Литература: Кузнецов Б. Г. Эйнштейн: жизнь, смерть, бессмертие. М., 1972.Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М., 1989.Френкель В. Я., Явелев Б. Е. Изобретения и эксперименты. М., 1990.В. Н. Григорьев<br><br><br>... смотреть

ЭЙНШТЕЙН

ЭЙНШТЕЙН (Einstein) Альберт (1879-1955), американский физик, уроженец Германии, наибольшую известность которому принесла созданная им теория ОТНОСИТЕЛЬ... смотреть

ЭЙНШТЕЙН

(Э, Е), единица энергии, применяемая иногда в фотохимии. Названа в честь А. Эйнштейна (А. Einstein). 1Э — суммарная энергия квантов монохромати... смотреть

ЭЙНШТЕЙН

эйнште́йн (по имени физика А. Эйнштейна (einstein), 1879 - 1955) единица энергии, применяемая в фотохимии; сокр. обозначения: э, е; 1э. - суммарная эн... смотреть

ЭЙНШТЕЙН

ЭЙНШТЕЙН (Einstein) Альберт (1879-1955), физик-теоретик, один из основателей современной физики, иностранный член-корреспондент РАН (1922) и иностранный почетный член АН СССР (1926). Родился в Германии, с 1893 жил в Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную (1905) и общую (1907-16) теории относительности. Автор основополагающих трудов по квантовой теории света: ввел понятие фотона (1905), установил законы фотоэффекта, основной закон фотохимии (закон Эйнштейна), предсказал (1917) индуцированное излучение. Развил статистическую теорию броуновского движения, заложив основы теории флуктуаций, создал квантовую статистику Бозе - Эйнштейна. С 1933 работал над проблемами космологии и единой теории поля. В 30-е гг. выступал против фашизма, войны, в 40-е - против применения ядерного оружия. В 1940 подписал письмо президенту США, об опасности создания ядерного оружия в Германии, которое стимулировало американские ядерные исследования. Один из инициаторов создания государства Израиль. Нобелевская премия (1921, за труды по теоретической физике, особенно за открытие законов фотоэффекта).<br><br><br>... смотреть

ЭЙНШТЕЙН

- (Einstein) Альберт (1879-1955) - физик-теоретик, один изоснователей современной физики, иностранный член-корреспондент РАН (1922)и иностранный почетный член АН СССР (1926). Родился в Германии, с 1893 жилв Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную(1905) и общую (1907-16) теории относительности. Автор основополагающихтрудов по квантовой теории света: ввел понятие фотона (1905), установилзаконы фотоэффекта, основной закон фотохимии (закон Эйнштейна), предсказал(1917) индуцированное излучение. Развил статистическую теорию броуновскогодвижения, заложив основы теории флуктуаций, создал квантовую статистикуБозе - Эйнштейна. С 1933 работал над проблемами космологии и единой теорииполя. В 30-е гг. выступал против фашизма, войны, в 40-е - противприменения ядерного оружия. В 1940 подписал письмо президенту США, обопасности создания ядерного оружия в Германии, которое стимулировалоамериканские ядерные исследования. Один из инициаторов созданиягосударства Израиль. Нобелевская премия (1921, за труды по теоретическойфизике, особенно за открытие законов фотоэффекта).... смотреть

ЭЙНШТЕЙН

1) Орфографическая запись слова: эйнштейн2) Ударение в слове: Эйншт`ейн3) Деление слова на слоги (перенос слова): эйнштейн4) Фонетическая транскрипция ... смотреть

ЭЙНШТЕЙН

[по имена физика А. Эйнштейна (A. Einstein; 1879 - 1955)] внесистемная спец. ед. молярной энергии электромагнитного излучения, применяемая иногда при и... смотреть

ЭЙНШТЕЙН

корень - ЭЙНШТЕЙН; нулевое окончание;Основа слова: ЭЙНШТЕЙНВычисленный способ образования слова: Бессуфиксальный или другой∩ - ЭЙНШТЕЙН; ⏰Слово Эйнштей... смотреть

ЭЙНШТЕЙН

эйнштейн [по имени физика а. эйнштейна (einstein), 1879 - 1955] - единица энергии, применяемая в фотохимии; сокр. обозначения: э, е; 1э. - суммарная энергия квантов излучения определенной частоты, число которых равно числу авогадро na = 6,022 • 1023; количественное значение 1 эйнштейна зависит, следовательно, от частоты (длины волны) излучения. <br><br><br>... смотреть

ЭЙНШТЕЙН

спец. единица энергии, применяемая в фотохимии. Названа по имени А. Эйнштейна. 1 Э.- суммарная энергия квантов излучения определ. частоты, число к-рых ... смотреть

ЭЙНШТЕЙН

ЭЙНШТЕЙН Альфред (1880-1952), музыковед. Двоюродный брат А. Эйнштейна. В 1933 эмигрировал, с 1939 жил в США. Исследователь главным образом итальянской и немецкой музыки 16-18 вв. Редактор 9-11-го издания Музыкального словаря Х. Римана (1919-29), 3-го издания Указателя сочинений В. А. Моцарта (1937).<br><br><br>... смотреть

ЭЙНШТЕЙН

эйншт'ейн, -а, род. п. мн. ч. -ов, счетн. ф. эйншт'ейн (ед. измер.) Синонимы: астероид, единица

ЭЙНШТЕЙН

ЭЙНШТЕЙН, специальная единица энергии, применяемая в фотохимии. Названа по имени А. Эйнштейна. 1 эйнштейн - суммарная энергия квантов излучения определенной частоты, число которых равно Авогадро постоянной. Таким образом, количественное значение эйнштейна зависит от частоты излучения.<br><br><br>... смотреть

ЭЙНШТЕЙН

ЭЙНШТЕЙН - специальная единица энергии, применяемая в фотохимии. Названа по имени А. Эйнштейна. 1 эйнштейн - суммарная энергия квантов излучения определенной частоты, число которых равно Авогадро постоянной. Таким образом, количественное значение эйнштейна зависит от частоты излучения.<br>... смотреть

ЭЙНШТЕЙН

ЭЙНШТЕЙН , специальная единица энергии, применяемая в фотохимии. Названа по имени А. Эйнштейна. 1 эйнштейн - суммарная энергия квантов излучения определенной частоты, число которых равно Авогадро постоянной. Таким образом, количественное значение эйнштейна зависит от частоты излучения.... смотреть

ЭЙНШТЕЙН

ЭЙНШТЕЙН, специальная единица энергии, применяемая в фотохимии. Названа по имени А. Эйнштейна. 1 эйнштейн - суммарная энергия квантов излучения определенной частоты, число которых равно Авогадро постоянной. Таким образом, количественное значение эйнштейна зависит от частоты излучения.... смотреть

ЭЙНШТЕЙН

(2 м); мн. эйнште/йны, Р. эйнште/йнов (единица энергии)Синонимы: астероид, единица

ЭЙНШТЕЙН

Эйншт'ейн, -а: зак'он Эйн-шт'ейна, коэффици'енты Эйн-шт'ейна, стат'истика Б'озе - Эйншт'ейна, эфф'ект Эйншт'ейна - де Х'аазаСинонимы: астероид, единица... смотреть

ЭЙНШТЕЙН

м.(единица энергии оптического излучения, применяемая в фотохимии) einstein, E

ЭЙНШТЕЙН

Эйнштейн Эйншт`ейн, -а: зак`он Эйн-шт`ейна, коэффици`енты Эйн-шт`ейна, стат`истика Б`озе - Эйншт`ейна, эфф`ект Эйншт`ейна - де Х`ааза

ЭЙНШТЕЙН

Внесистемная единица количества квантов света.Синонимы: астероид, единица

ЭЙНШТЕЙН

(фамилия) 爱因斯坦 aìyīnsītǎnСинонимы: астероид, единица

ЭЙНШТЕЙН

einsteinСинонимы: астероид, единица

ЭЙНШТЕЙН

эйнштейн эйншт`ейн, -а, р. мн. -ов, счетн. ф. эйншт`ейн (ед. измер.)

ЭЙНШТЕЙН

Начальная форма - Эйнштейн, неизменяемое, женский род, одушевленное, фамилия

ЭЙНШТЕЙН

Ударение в слове: Эйншт`ейнУдарение падает на букву: е

ЭЙНШТЕЙН

Штейн Нэш Эйнштейн

ЭЙНШТЕЙН (1)

Эйнштейн был в школе плохим учеником. Эта легенда в немалой степени помогает двоечникам сохранять оптимизм: уж если сам Эйнштейн… Между тем великий физик в детстве учился совсем неплохо. Другое дело, что его не интересовали спорт и иностранные языки и ему не нравилось, как учителя обращаются с учениками. «Учителя младших классов ведут себя как фельдфебели, а старших классов – как лейтенанты», – вспоминал он позднее. Именно из-за неприятия Эйнштейном военизированной формы преподавания («Я презираю того, кто с удовольствием шагает строем на урок музыки – головной мозг дан ему по ошибке, ему хватило бы спинного») его не любили учителя. Однако не настолько, чтобы оставлять на второй год или выкинуть из школы (Луитпольдовской гимназии в Мюнхене). «Как будет здорово, когда ты, наконец, оставишь гимназию, – признался ему однажды один из учителей, а на возражение Эйнштейна, что он ничего дурного не сделал, тот объяснил: – Твое присутствие и равнодушное отношение ко всему, чему мы учим в классе, подрывает репутацию всей школы». Только в этом смысле Эйнштейн был плохим учеником. Что же касается его отметок по физике и математике, то они были превосходными.... смотреть

ЭЙНШТЕЙН (2)

Эйнштейн получил Нобелевскую премию по физике за свою Теорию относительности. Альберт Эйнштейн получил Нобелевскую премию по физике в 1921 году не за Теорию относительности, которую он опубликовал 16 годами раньше, а за работы по так называемому фотоэффекту. Саму премию он получил на год позже (в 1922 г.) вместе с датским физиком Нильсом Бором.... смотреть

ЭЙНШТЕЙН (EINSTEIN) АЛЬБЕРТ

(род. 14 марта 1879, Ульм ум. 18 апр. 1955, Принстон, Нью-Джерси) нем.-амер. физик-теоретик; с 1914 профессор в Берлине, с 1933 в Принстоне. Разработал специальную (1905) и общую (1916) теорию относительности. Открытие Эйнштейном световых квантов подтвердило квантовую теорию Планка. Работы Эйнштейна имеют огромное значение для современной физики, в первую очередь для атомной физики. Не менее важны они также для теории естественных наук и для современной метафизики. Помимо прочих работ, Эйнштейн написал: *Die Evolution der Physik* (совместно с Л. Инфельдом) (рус. пер. *Эволюция физики*, 1948); *Aus meinen spдteren Jahren* (статьи, письма, выступления), 1952.... смотреть

ЭЙНШТЕЙН (EINSTEIN) АЛЬБЕРТ

(1879-1955) ученый, мыслитель, гуманист, внесший фундаментальный вклад в развитие физики XX в. Проф. теоретической физики в ун-тах Цюриха, Праги, Берлина (1908-1933). С 1933 до конца жизни сотрудник Института перспективных исследований в Принстоне (США). С именем Э. связано создание специальной теории относительности. Ему также принадлежат основополагающие работы по общей теории относительности, статистической механике и квантовой теории. За создание теории фотоэффекта Э. был удостоен Нобелевской премии по физике за 1921. В последующие годы Э. работал над построением единой теории поля, объединяющей тяготение и электромагнетизм и включающей в себя квантовую механику в качестве следствия. И хотя эта работа в ее конкретном замысле не была поддержана ведущими физиками-теоретиками того времени, лежащая в ее основе общая программная установка сохранила свою эвристическую ценность и на пути ее реализации был достигнут значительный прогресс. Для осознания того нового философского содержания, которое физическое познание XX в. внесло в человеческую культуру, важна знаменитая дискуссия Э. и Н. Бора по вопросам интерпретации квантовой механики. Будучи одним из величайших в истории науки интеллектуальным диспутом, эта дискуссия сама по себе является одним из убедительных свидетельств в пользу признания ценности борьбы идей, мнений, способов понимания и объяснения действительности. Позицию Э. в контексте его отношения к квантовой механике принято квалифицировать как реализм. Было бы неверным, однако, идентифицировать его философские взгляды посредством сведения их к какой-либо одной из позиций. Для него был характерен, в частности, эпистемологический плюрализм и даже *оппортунизм* убеждение в том, что в разных ситуациях, для решения разных проблем можно использовать разные методологии и придерживаться разных эпистемологий. Так, признавая большое влияние критицизма Маха на этапе работы по созданию теории относительности, Э. впоследствии критически отзывался о его философии, никогда не становясь, однако, на позицию ее полного отрицания. В период спора по поводу интерпретации квантовой механики Э. обращался к наследию Канта и особенно Спинозы, пантеистическое мировосприятие которого было глубоко созвучно его духовным устремлениям в последние годы жизни. Взгляды Э. на строение научных теорий, на возможность их экспериментальной проверки, на роль мысленного эксперимента в познании и др. оказали большое влияние на многих философов науки XX в. Собрание научных трудов. В 4 т. М., 1967.... смотреть

ЭЙНШТЕЙН (EINSTEIN) АЛЬБЕРТ

ЭЙНШТЕЙН (Einstein) Альберт (1879-1955) - физик-теоретик, Один из основателей современной физики, иностранный член-корреспондент РАН (1922) и иностранный почетный член АН СССР (1926). Родился в Германии, с 1893 жил в Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную (1905) и общую (1907-16) теории относительности. Автор основополагающих трудов по квантовой теории света: ввел понятие фотона (1905), установил законы фотоэффекта, основной закон фотохимии (закон Эйнштейна), предсказал (1917) индуцированное излучение. Развил статистическую теорию броуновского движения, заложив основы теории флуктуаций, создал квантовую статистику Бозе - Эйнштейна. С 1933 работал над проблемами космологии и единой теории поля. В 30-е гг. выступал против фашизма, войны, в 40-е - против применения ядерного оружия. В 1940 подписал письмо президенту США, об опасности создания ядерного оружия в Германии, которое стимулировало американские ядерные исследования. Один из инициаторов создания государства Израиль. Нобелевская премия (1921, за труды по теоретической физике, особенно за открытие законов фотоэффекта).<br>... смотреть

ЭЙНШТЕЙН (EINSTEIN) АЛЬБЕРТ

ЭЙНШТЕЙН (Einstein) Альберт (14 марта 1879 - Ульм, Германия - 18 апреля 1955, Принстон, США), физик-теоретик, один из основателей современной физики, создатель теории относительности, автор основополагающих трудов по квантовой теории и статистической физике.Детство. Начальное образованиеАльберт ЭЙНШТЕЙН родился в старинном немецком городе Ульме, но через год семья переселилась в Мюнхен, где отец Альберта, Герман ЭЙНШТЕЙН, и дядя Якоб организовали небольшую компанию "Электротехническая фабрика Я. Эйнштейна и К.". Вначале дела компании, занимавшейся усовершенствованием приборов дугового освещения, электроизмерительной аппаратурой и генераторами постоянного тока, шли довольно успешно. Но в 90-х гг. 19 в., в связи с расширением строительства крупных электроцентралей и линий дальних электропередач, возник целый ряд мощных электротехнических фирм. Надеясь спасти компанию, братья Эйнштейны в 1894 перебрались в Милан, однако через два года, не выдержав конкуренции, компания прекратила свое существование.Дядя Якоб уделял много времени маленькому племяннику. "Я помню, например, что теорема Пифагора была мне показана моим дядей еще до того, как в мои руки попала священная книжечка по геометрии", - так ЭЙНШТЕЙН в воспоминаниях, относящихся к 1945, говорил об учебнике евклидовой геометрии. Часто дядя задавал мальчику математические задачи, и тот "испытывал подлинное счастье, когда справлялся с ними".Родители отдали Альберта сначала в католическую начальную школу, а затем в мюнхенскую классическую гимназию Луитпольда, известную как прогрессивное и весьма либеральное учебное заведение, но которую он так и не окончил, переехав вслед за семьей в Милан. И в школе, и в гимназии Альберт приобрел не лучшую репутацию.Чтение научно-популярных книг породило у юного Эйнштейна, по его собственному выражению, "прямо-таки фантастическое свободомыслие". В своих воспоминаниях М. Борн писал: "Уже в ранние годы ЭЙНШТЕЙН показал неукротимую волю к независимости. Он ненавидел игру в солдаты, потому что это означало насилие". Позже ЭЙНШТЕЙН говорил, что людям, которым доставляет удовольствие маршировать под звуки марша, головной мозг достался зря, они вполне могли бы довольствоваться одним спинным.Первый год в ЩвейцарииВ октябре 1895 шестнадцатилетний ЭЙНШТЕЙН пешком отправился из Милана в Цюрих, чтобы поступить в Федеральную высшую техническую школу - знаменитый Политехникум, для поступления в который не требовалось свидетельства об окончании средней школы. Блестяще сдав вступительные экзамены по математике, физике и химии, он, однако, с треском провалился по другим предметам. Ректор Политехникума, оценив незаурядные математические способности Эйнштейна, направил его для подготовки в кантональную школу в Аарау (в 20 милях к западу от Цюриха), которая в то время считалась одной из лучших в Щвейцарии. год, проведенный в этой школе, которой руководил серьезный ученый и прекрасный педагог А. Таухшмид, оказался и очень полезным, и - по контрасту с казарменной обстановкой в Пруссии - приятным.Учеба в ПолитехникумеВыпускные экзамены в Аарау ЭЙНШТЕЙН сдал вполне успешно (кроме экзамена по французскому языку), что дало ему право на зачисление в Политехникум в Цюрихе. Кафедру физики там возглавлял профессор В. Г. Вебер, прекрасный лектор и талантливый экспериментатор, занимавшийся в основном вопросами электротехники. Поначалу он очень хорошо принял Эйнштейна, но в дальнейшем отношения между ними осложнились настолько, что после окончания учебы ЭЙНШТЕЙН некоторое время не мог устроиться на работу. В какой-то мере это объяснялось чисто научными причинами. Отличаясь консерватизмом взглядов на электромагнитные явления, Вебер не принимал теории Максвелла, представлений о поле и придерживался концепции дальнодействия. Его студенты узнавали прошлое физики, но не ее настоящее и, тем более, будущее. ЭЙНШТЕЙН же изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное ) и как можно экспериментально обнаружить движение относительно эфира. Он тогда не знал об опытах Майкельсона и независимо от него предложил свою интерференционную методику.Но опыты, придуманные Эйнштейном, со страстью работавшим в физическом практикуме, не имели шансов осуществиться. Преподаватели недолюбливали строптивого студента. "Вы умный малый, ЭЙНШТЕЙН, очень умный малый, но у вас есть большой недостаток - вы не терпите замечаний", - сказал ему как-то Вебер, и этим определялось многое. Бюро патентов. Первые шаги к признаниюПосле окончания Политехникума (1900) молодой дипломированный преподаватель физики (Эйнштейну шел тогда двадцать второй год) жил в основном у родителей в Милане и два года не мог найти постоянной работы. Только в 1902 он получил наконец, по рекомендации друзей, место эксперта в федеральном Бюро патентов в Берне. Незадолго до этого ЭЙНШТЕЙН сменил гражданство и стал щвейцарским подданным. Через несколько месяцев после устройства на работу он женился на своей бывшей цюрихской однокурснице Милеве Марич, родом из Сербии, которая была на четыре года старше его. В Бюро патентов, которое ЭЙНШТЕЙН называл "светским монастырем", он проработал семь с лишним лет, считая эти годы самыми счастливыми в жизни. Должность "патентного служки" постоянно занимала его ум различными научными и техническими вопросами, но оставляла достаточно времени для самостоятельной творческой работы. Ее результаты к середине "счастливых бернских лет" составили содержание научных статей, которые изменили облик современной физики, принесли Эйнштейну мировую славу.Броуновское движениеПервая из этих статей - "О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории", вышедшая в 1905, - была посвящена теории броуновского движения. Это явление (непрерывное беспорядочное зигзагообразное движение частичек цветочной пыльцы в жидкости), открытое в 1827 английским ботаником Р. Броуном, уже получило тогда статистическое объяснение, но теория Эйнштейна (который не знал предшествующих работ по броуновскому движению) имела законченную форму и открывала возможности количественных экспериментальных исследований. В 1908 эксперименты Ж. Б. Перрена полностью подтвердили теорию Эйнштейна, что сыграло важную роль для окончательного становления молекулярно-кинетических представлений.Кванты и фотоэффектВ том же 1905 вышла и другая работа Эйнштейна - "Об одной эвристической точке зрения на возникновение и превращение света". За пять лет до этого М. Планк показал, что спектральный состав излучения, испускаемого горячими телами, находит объяснение, если принять, что процесс излучения дискретен, то есть свет испускается не непрерывно, а дискретными порциями определенной энергии. ЭЙНШТЕЙН выдвинул предположение, что и поглощение света происходит теми же порциями и что вообще "однородный свет состоит из зерен энергии (световых квантов),... несущихся в пустом пространстве со скоростью света". Эта революционная Идея позволила Эйнштейну объяснить законы фотоэффекта, в частности, факт существования "красной границы", то есть той минимальной частоты, ниже которой выбивания светом электронов из вещества вообще не происходит.Идея квантов была применена Эйнштейном и к объяснению других явлений, например, флуоресценции, фотоионизации, загадочных вариаций удельной теплоемкости твердых тел, которые не могла описать классическая теория.Работы Эйнштейна, посвященные квантовой теории света, были удостоены в 1921 Нобелевской премии. Частная (специальная) теория относительностиНаибольшую известность Эйнштейну все же принесла теория относительности, изложенная им впервые в 1905, в статье "К электродинамике движущихся тел". Уже в юности ЭЙНШТЕЙН пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. Теперь ЭЙНШТЕЙН решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики.ЭЙНШТЕЙН выдвинул удивительный и на первый взгляд парадоксальный постулат, что скорость света для всех наблюдателей, как бы они ни двигались, одинакова. Этот постулат (при выполнении некоторых дополнительных условий) приводит к полученным ранее Х. Лоренцем формулам для преобразований координат и времени при переходе из одной инерциальной системы отсчета в другую, движущуюся относительно первой. Но Лоренц рассматривал эти преобразования как вспомогательные, или фиктивные, не имеющие непосредственного отношения к реальному пространству и времени. ЭЙНШТЕЙН понял реальность этих преобразований, в частности, реальность относительности одновременности.Таким образом, принцип относительности, установленный для механики еще Галилеем, был распространен на электродинамику и другие области физики. Это привело, в частности, к установлению важного универсального соотношения между массой М, энергией Е и импульсом Р: E2= М2 c4 + P2с2 (где с - скорость света), которое можно назвать одной из теоретических предпосылок использования внутриядерной энергии.Профессорская деятельность. Приглашение в Берлин. Общая теория относительностиВ 1905 Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1909 он избран профессором Цюрихского университета, а через два года - Немецкого университета в Праге. В 1912 ЭЙНШТЕЙН возвратился в Цюрих, где занял кафедру в Политехникуме, но уже в 1914 принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М. Гроссмана в 1912 появилась статья "Набросок обобщенной теории относительности", а окончательная формулировка теории датируется 1915. Эта теория, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Опираясь на всем известный факт, что "тяжелая" и "инертная" массы равны, удалось найти принципиально новый подход к решению проблемы, поставленной еще И. Ньютоном: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия.Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама "геометрия" пространства - времени. Любое массивное тело, по Эйнштейну, вызывает вокруг себя "искривление" пространства, то есть делает его геометрические свойства иными, чем в геометрии Евклида, и любое другое тело, движущееся в таком "искривленном" пространстве, испытывает воздействие первого тела.Общая теория относительности привела к предсказанию эффектов, которые вскоре получили экспериментальное подтверждение. Она позволила также сформулировать принципиально новые модели, относящиеся ко всей Вселенной, в том числе и модели нестационарной (расширяющейся) Вселенной.ЭмиграцияНе без колебаний принял ЭЙНШТЕЙН предложение переехать в Берлин. Но возможность общения с крупнейшими немецкими учеными, в числе которых был и Планк, привлекала его.Политическая и нравственная атмосфера в Германии делалась все тягостнее, антисемитизм поднимал голову, и когда власть захватили фашисты, ЭЙНШТЕЙН в 1933 навсегда покинул Германию. Впоследствии в знак протеста против фашизма он отказался от германского подданства и вышел из состава Прусской и Баварской Академий наук. В берлинский период, кроме общей теории относительности, Эйнштейном была разработана статистика частиц целого спина, введено понятие вынужденного излучения, играющего важную роль в лазерной физике, предсказано (совместно с де Гаазом) явление возникновения вращательного импульса тел при их намагничивании и др. Однако, будучи одним из создателей квантовой теории, ЭЙНШТЕЙН не принял вероятностной интерпретации квантовой механики, полагая, что фундаментальная физическая теория не может быть статистической по своему характеру. Он нередко повторял, что "Бог не играет в кости" со Вселенной.Переехав в США, ЭЙНШТЕЙН занял должность профессора физики в новом институте фундаментальных исследований в Принстоне (штат Нью-Джерси). Он продолжал заниматься вопросами космологии, а также усиленно искал пути построения единой теории поля, которая бы объединила гравитацию, электромагнетизм (а возможно, и остальное). И хотя реализовать эту программу ему не удалось, это не поколебало репутации Эйнштейна как одного из величайших естествоиспытателей всех времен.В Принстоне ЭЙНШТЕЙН стал местной достопримечательностью. Его знали как физика с мировым именем, но для всех он был скромным, приветливым и несколько эксцентричным человеком, с которым можно было столкнуться прямо на улице. В часы досуга он любил музицировать. Начав учиться игре на скрипке в шесть лет, ЭЙНШТЕЙН продолжал играть всю жизнь, иногда в ансамбле с другими физиками. Ему нравился парусный спорт, который, как он полагал, необыкновенно способствует размышлениям над физическими проблемами. Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952, которое он не принял.Будучи последовательным сторонником сионизма, ЭЙНШТЕЙН приложил немало усилий к созданию Еврейского университета в Иерусалиме в 1925.В умах многих людей имя Эйнштейна связано с атомной проблемой. Действительно, понимая, какой трагедией для человечества могло бы оказаться создание в фашистской Германии атомной бомбы, он в 1939 направил президенту США письмо, послужившее толчком для работ в этом направлении в Америке. Но уже в конце войны его отчаянные попытки удержать политиков и генералов от преступных и безумных действий оказались тщетными. Это было самой большой трагедией его жизни.ЭЙНШТЕЙН скончался в Принстоне от аневризмы аорты.Литература: Кузнецов Б. Г. Эйнштейн: жизнь, смерть, бессмертие. М., 1972.Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М., 1989.Френкель В. Я., Явелев Б. Е. Изобретения и эксперименты. М., 1990.В. Н. Григорьев ЭЙНШТЕЙН Альфред (1880-1952) - музыковед. Двоюродный брат А. Эйнштейна. В 1933 эмигрировал, с 1939 жил в США. Исследователь главным образом итальянской и немецкой музыки 16-18 вв. Редактор 9-11-го издания Музыкального словаря Х. Римана (1919-29), 3-го издания Указателя сочинений В. А. Моцарта (1937).<br>... смотреть

ЭЙНШТЕЙН (EINSTEIN), АЛЬБЕРТ

(1879-1955)   — физик-теоретик, один из основателей современной физики, создатель теории относительности, автор основополагающих трудов по квантовой те... смотреть

ЭЙНШТЕЙН (EINSTEIN) АЛЬБЕРТ (14 МАРТА 1879

ЭЙНШТЕЙН (Einstein) Альберт (14 марта 1879 , Ульм, Германия - 18 апреля 1955, Принстон, США), физик-теоретик, один из основателей современной физики, создатель теории относительности, автор основополагающих трудов по квантовой теории и статистической физике.Детство. Начальное образованиеАльберт Эйнштейн родился в старинном немецком городе Ульме, но через год семья переселилась в Мюнхен, где отец Альберта, Герман Эйнштейн, и дядя Якоб организовали небольшую компанию "Электротехническая фабрика Я. Эйнштейна и К°". Вначале дела компании, занимавшейся усовершенствованием приборов дугового освещения, электроизмерительной аппаратурой и генераторами постоянного тока, шли довольно успешно. Но в 90-х гг. 19 в., в связи с расширением строительства крупных электроцентралей и линий дальних электропередач, возник целый ряд мощных электротехнических фирм. Надеясь спасти компанию, братья Эйнштейны в 1894 перебрались в Милан, однако через два года, не выдержав конкуренции, компания прекратила свое существование.Дядя Якоб уделял много времени маленькому племяннику. "Я помню, например, что теорема Пифагора была мне показана моим дядей еще до того, как в мои руки попала священная книжечка по геометрии", - так Эйнштейн в воспоминаниях, относящихся к 1945, говорил об учебнике евклидовой геометрии. Часто дядя задавал мальчику математические задачи, и тот "испытывал подлинное счастье, когда справлялся с ними".Родители отдали Альберта сначала в католическую начальную школу, а затем в мюнхенскую классическую гимназию Луитпольда, известную как прогрессивное и весьма либеральное учебное заведение, но которую он так и не окончил, переехав вслед за семьей в Милан. И в школе, и в гимназии Альберт приобрел не лучшую репутацию. Чтение научно-популярных книг породило у юного Эйнштейна, по его собственному выражению, "прямо-таки фантастическое свободомыслие". В своих воспоминаниях М. Борн писал: "Уже в ранние годы Эйнштейн показал неукротимую волю к независимости. Он ненавидел игру в солдаты, потому что это означало насилие". Позже Эйнштейн говорил, что людям, которым доставляет удовольствие маршировать под звуки марша, головной мозг достался зря, они вполне могли бы довольствоваться одним спинным.Первый год в ЩвейцарииВ октябре 1895 шестнадцатилетний Эйнштейн пешком отправился из Милана в Цюрих, чтобы поступить в Федеральную высшую техническую школу - знаменитый Политехникум, для поступления в который не требовалось свидетельства об окончании средней школы. Блестяще сдав вступительные экзамены по математике, физике и химии, он, однако, с треском провалился по другим предметам. Ректор Политехникума, оценив незаурядные математические способности Эйнштейна, направил его для подготовки в кантональную школу в Аарау (в 20 милях к западу от Цюриха), которая в то время считалась одной из лучших в Щвейцарии. Год, проведенный в этой школе, которой руководил серьезный ученый и прекрасный педагог А. Таухшмид, оказался и очень полезным, и - по контрасту с казарменной обстановкой в Пруссии - приятным.Учеба в ПолитехникумеВыпускные экзамены в Аарау Эйнштейн сдал вполне успешно (кроме экзамена по французскому языку), что дало ему право на зачисление в Политехникум в Цюрихе. Кафедру физики там возглавлял профессор В. Г. Вебер, прекрасный лектор и талантливый экспериментатор, занимавшийся в основном вопросами электротехники. Поначалу он очень хорошо принял Эйнштейна, но в дальнейшем отношения между ними осложнились настолько, что после окончания учебы Эйнштейн некоторое время не мог устроиться на работу. В какой-то мере это объяснялось чисто научными причинами. Отличаясь консерватизмом взглядов на электромагнитные явления, Вебер не принимал теории Максвелла, представлений о поле и придерживался концепции дальнодействия. Его студенты узнавали прошлое физики, но не ее настоящее и, тем более, будущее. Эйнштейн же изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное ) и как можно экспериментально обнаружить движение относительно эфира. Он тогда не знал об опытах Майкельсона и независимо от него предложил свою интерференционную методику.Но опыты, придуманные Эйнштейном, со страстью работавшим в физическом практикуме, не имели шансов осуществиться. Преподаватели недолюбливали строптивого студента. "Вы умный малый, Эйнштейн, очень умный малый, но у вас есть большой недостаток - вы не терпите замечаний", - сказал ему как-то Вебер, и этим определялось многое. Бюро патентов. Первые шаги к признаниюПосле окончания Политехникума (1900) молодой дипломированный преподаватель физики (Эйнштейну шел тогда двадцать второй год) жил в основном у родителей в Милане и два года не мог найти постоянной работы. Только в 1902 он получил наконец, по рекомендации друзей, место эксперта в федеральном Бюро патентов в Берне. Незадолго до этого Эйнштейн сменил гражданство и стал щвейцарским подданным. Через несколько месяцев после устройства на работу он женился на своей бывшей цюрихской однокурснице Милеве Марич, родом из Сербии, которая была на четыре года старше его. В Бюро патентов, которое Эйнштейн называл "светским монастырем", он проработал семь с лишним лет, считая эти годы самыми счастливыми в жизни. Должность "патентного служки" постоянно занимала его ум различными научными и техническими вопросами, но оставляла достаточно времени для самостоятельной творческой работы. Ее результаты к середине "счастливых бернских лет" составили содержание научных статей, которые изменили облик современной физики, принесли Эйнштейну мировую славу.Броуновское движениеПервая из этих статей - "О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории", вышедшая в 1905, - была посвящена теории броуновского движения. Это явление (непрерывное беспорядочное зигзагообразное движение частичек цветочной пыльцы в жидкости), открытое в 1827 английским ботаником Р. Броуном, уже получило тогда статистическое объяснение, но теория Эйнштейна (который не знал предшествующих работ по броуновскому движению) имела законченную форму и открывала возможности количественных экспериментальных исследований. В 1908 эксперименты Ж. Б. Перрена полностью подтвердили теорию Эйнштейна, что сыграло важную роль для окончательного становления молекулярно-кинетических представлений.Кванты и фотоэффектВ том же 1905 вышла и другая работа Эйнштейна - "Об одной эвристической точке зрения на возникновение и превращение света". За пять лет до этого М. Планк показал, что спектральный состав излучения, испускаемого горячими телами, находит объяснение, если принять, что процесс излучения дискретен, то есть свет испускается не непрерывно, а дискретными порциями определенной энергии. Эйнштейн выдвинул предположение, что и поглощение света происходит теми же порциями и что вообще "однородный свет состоит из зерен энергии (световых квантов),... несущихся в пустом пространстве со скоростью света". Эта революционная идея позволила Эйнштейну объяснить законы фотоэффекта, в частности, факт существования "красной границы", то есть той минимальной частоты, ниже которой выбивания светом электронов из вещества вообще не происходит.Идея квантов была применена Эйнштейном и к объяснению других явлений, например, флуоресценции, фотоионизации, загадочных вариаций удельной теплоемкости твердых тел, которые не могла описать классическая теория.Работы Эйнштейна, посвященные квантовой теории света, были удостоены в 1921 Нобелевской премии. Частная (специальная) теория относительностиНаибольшую известность Эйнштейну все же принесла теория относительности, изложенная им впервые в 1905, в статье "К электродинамике движущихся тел". Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики.Эйнштейн выдвинул удивительный и на первый взгляд парадоксальный постулат, что скорость света для всех наблюдателей, как бы они ни двигались, одинакова. Этот постулат (при выполнении некоторых дополнительных условий) приводит к полученным ранее Х. Лоренцем формулам для преобразований координат и времени при переходе из одной инерциальной системы отсчета в другую, движущуюся относительно первой. Но Лоренц рассматривал эти преобразования как вспомогательные, или фиктивные, не имеющие непосредственного отношения к реальному пространству и времени. Эйнштейн понял реальность этих преобразований, в частности, реальность относительности одновременности.Таким образом, принцип относительности, установленный для механики еще Галилеем, был распространен на электродинамику и другие области физики. Это привело, в частности, к установлению важного универсального соотношения между массой М, энергией Е и импульсом Р: E2= М2 c4 + P2с2 (где с - скорость света), которое можно назвать одной из теоретических предпосылок использования внутриядерной энергии.Профессорская деятельность. Приглашение в Берлин. Общая теория относительностиВ 1905 Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1909 он избран профессором Цюрихского университета, а через два года - Немецкого университета в Праге. В 1912 Эйнштейн возвратился в Цюрих, где занял кафедру в Политехникуме, но уже в 1914 принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М. Гроссмана в 1912 появилась статья "Набросок обобщенной теории относительности", а окончательная формулировка теории датируется 1915. Эта теория, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Опираясь на всем известный факт, что "тяжелая" и "инертная" массы равны, удалось найти принципиально новый подход к решению проблемы, поставленной еще И. Ньютоном: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия.Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама "геометрия" пространства - времени. Любое массивное тело, по Эйнштейну, вызывает вокруг себя "искривление" пространства, то есть делает его геометрические свойства иными, чем в геометрии Евклида, и любое другое тело, движущееся в таком "искривленном" пространстве, испытывает воздействие первого тела.Общая теория относительности привела к предсказанию эффектов, которые вскоре получили экспериментальное подтверждение. Она позволила также сформулировать принципиально новые модели, относящиеся ко всей Вселенной, в том числе и модели нестационарной (расширяющейся) Вселенной.ЭмиграцияНе без колебаний принял Эйнштейн предложение переехать в Берлин. Но возможность общения с крупнейшими немецкими учеными, в числе которых был и Планк, привлекала его.Политическая и нравственная атмосфера в Германии делалась все тягостнее, антисемитизм поднимал голову, и когда власть захватили фашисты, Эйнштейн в 1933 навсегда покинул Германию. Впоследствии в знак протеста против фашизма он отказался от германского подданства и вышел из состава Прусской и Баварской Академий наук. В берлинский период, кроме общей теории относительности, Эйнштейном была разработана статистика частиц целого спина, введено понятие вынужденного излучения, играющего важную роль в лазерной физике, предсказано (совместно с де Гаазом) явление возникновения вращательного импульса тел при их намагничивании и др. Однако, будучи одним из создателей квантовой теории, Эйнштейн не принял вероятностной интерпретации квантовой механики, полагая, что фундаментальная физическая теория не может быть статистической по своему характеру. Он нередко повторял, что "Бог не играет в кости" со Вселенной.Переехав в США, Эйнштейн занял должность профессора физики в новом институте фундаментальных исследований в Принстоне (штат Нью-Джерси). Он продолжал заниматься вопросами космологии, а также усиленно искал пути построения единой теории поля, которая бы объединила гравитацию, электромагнетизм (а возможно, и остальное). И хотя реализовать эту программу ему не удалось, это не поколебало репутации Эйнштейна как одного из величайших естествоиспытателей всех времен.В Принстоне Эйнштейн стал местной достопримечательностью. Его знали как физика с мировым именем, но для всех он был скромным, приветливым и несколько эксцентричным человеком, с которым можно было столкнуться прямо на улице. В часы досуга он любил музицировать. Начав учиться игре на скрипке в шесть лет, Эйнштейн продолжал играть всю жизнь, иногда в ансамбле с другими физиками. Ему нравился парусный спорт, который, как он полагал, необыкновенно способствует размышлениям над физическими проблемами. Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952, которое он не принял.Будучи последовательным сторонником сионизма, Эйнштейн приложил немало усилий к созданию Еврейского университета в Иерусалиме в 1925.В умах многих людей имя Эйнштейна связано с атомной проблемой. Действительно, понимая, какой трагедией для человечества могло бы оказаться создание в фашистской Германии атомной бомбы, он в 1939 направил президенту США письмо, послужившее толчком для работ в этом направлении в Америке. Но уже в конце войны его отчаянные попытки удержать политиков и генералов от преступных и безумных действий оказались тщетными. Это было самой большой трагедией его жизни.Эйнштейн скончался в Принстоне от аневризмы аорты.Литература: Кузнецов Б. Г. Эйнштейн: жизнь, смерть, бессмертие. М., 1972.Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М., 1989.Френкель В. Я., Явелев Б. Е. Изобретения и эксперименты. М., 1990.В. Н. Григорьев... смотреть

ЭЙНШТЕЙН (EINSTEIN) АЛЬБЕРТ (14 МАРТА 1879, УЛЬМ, ГЕРМАНИЯ 18 АПРЕЛЯ 1955, ПРИНСТОН, США)

ЭЙНШТЕЙН (Einstein) Альберт (14 марта 1879, Ульм, Германия - 18 апреля 1955, Принстон, США), физик-теоретик, один из основателей современной физики, создатель теории относительности, автор основополагающих трудов по квантовой теории и статистической физике.Детство. Начальное образованиеАльберт Эйнштейн родился в старинном немецком городе Ульме, но через год семья переселилась в Мюнхен, где отец Альберта, Герман Эйнштейн, и дядя Якоб организовали небольшую компанию "Электротехническая фабрика Я. Эйнштейна и К°". Вначале дела компании, занимавшейся усовершенствованием приборов дугового освещения, электроизмерительной аппаратурой и генераторами постоянного тока, шли довольно успешно. Но в 90-х гг. 19 в., в связи с расширением строительства крупных электроцентралей и линий дальних электропередач, возник целый ряд мощных электротехнических фирм. Надеясь спасти компанию, братья Эйнштейны в 1894 перебрались в Милан, однако через два года, не выдержав конкуренции, компания прекратила свое существование.Дядя Якоб уделял много времени маленькому племяннику. "Я помню, например, что теорема Пифагора была мне показана моим дядей еще до того, как в мои руки попала священная книжечка по геометрии", - так Эйнштейн в воспоминаниях, относящихся к 1945, говорил об учебнике евклидовой геометрии. Часто дядя задавал мальчику математические задачи, и тот "испытывал подлинное счастье, когда справлялся с ними".Родители отдали Альберта сначала в католическую начальную школу, а затем в мюнхенскую классическую гимназию Луитпольда, известную как прогрессивное и весьма либеральное учебное заведение, но которую он так и не окончил, переехав вслед за семьей в Милан. И в школе, и в гимназии Альберт приобрел не лучшую репутацию. Чтение научно-популярных книг породило у юного Эйнштейна, по его собственному выражению, "прямо-таки фантастическое свободомыслие". В своих воспоминаниях М. Борн писал: "Уже в ранние годы Эйнштейн показал неукротимую волю к независимости. Он ненавидел игру в солдаты, потому что это означало насилие". Позже Эйнштейн говорил, что людям, которым доставляет удовольствие маршировать под звуки марша, головной мозг достался зря, они вполне могли бы довольствоваться одним спинным.Первый год в ЩвейцарииВ октябре 1895 шестнадцатилетний Эйнштейн пешком отправился из Милана в Цюрих, чтобы поступить в Федеральную высшую техническую школу - знаменитый Политехникум, для поступления в который не требовалось свидетельства об окончании средней школы. Блестяще сдав вступительные экзамены по математике, физике и химии, он, однако, с треском провалился по другим предметам. Ректор Политехникума, оценив незаурядные математические способности Эйнштейна, направил его для подготовки в кантональную школу в Аарау (в 20 милях к западу от Цюриха), которая в то время считалась одной из лучших в Щвейцарии. Год, проведенный в этой школе, которой руководил серьезный ученый и прекрасный педагог А. Таухшмид, оказался и очень полезным, и - по контрасту с казарменной обстановкой в Пруссии - приятным.Учеба в ПолитехникумеВыпускные экзамены в Аарау Эйнштейн сдал вполне успешно (кроме экзамена по французскому языку), что дало ему право на зачисление в Политехникум в Цюрихе. Кафедру физики там возглавлял профессор В. Г. Вебер, прекрасный лектор и талантливый экспериментатор, занимавшийся в основном вопросами электротехники. Поначалу он очень хорошо принял Эйнштейна, но в дальнейшем отношения между ними осложнились настолько, что после окончания учебы Эйнштейн некоторое время не мог устроиться на работу. В какой-то мере это объяснялось чисто научными причинами. Отличаясь консерватизмом взглядов на электромагнитные явления, Вебер не принимал теории Максвелла, представлений о поле и придерживался концепции дальнодействия. Его студенты узнавали прошлое физики, но не ее настоящее и, тем более, будущее. Эйнштейн же изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное ) и как можно экспериментально обнаружить движение относительно эфира. Он тогда не знал об опытах Майкельсона и независимо от него предложил свою интерференционную методику.Но опыты, придуманные Эйнштейном, со страстью работавшим в физическом практикуме, не имели шансов осуществиться. Преподаватели недолюбливали строптивого студента. "Вы умный малый, Эйнштейн, очень умный малый, но у вас есть большой недостаток - вы не терпите замечаний", - сказал ему как-то Вебер, и этим определялось многое. Бюро патентов. Первые шаги к признаниюПосле окончания Политехникума (1900) молодой дипломированный преподаватель физики (Эйнштейну шел тогда двадцать второй год) жил в основном у родителей в Милане и два года не мог найти постоянной работы. Только в 1902 он получил наконец, по рекомендации друзей, место эксперта в федеральном Бюро патентов в Берне. Незадолго до этого Эйнштейн сменил гражданство и стал щвейцарским подданным. Через несколько месяцев после устройства на работу он женился на своей бывшей цюрихской однокурснице Милеве Марич, родом из Сербии, которая была на четыре года старше его. В Бюро патентов, которое Эйнштейн называл "светским монастырем", он проработал семь с лишним лет, считая эти годы самыми счастливыми в жизни. Должность "патентного служки" постоянно занимала его ум различными научными и техническими вопросами, но оставляла достаточно времени для самостоятельной творческой работы. Ее результаты к середине "счастливых бернских лет" составили содержание научных статей, которые изменили облик современной физики, принесли Эйнштейну мировую славу.Броуновское движениеПервая из этих статей - "О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории", вышедшая в 1905, - была посвящена теории броуновского движения. Это явление (непрерывное беспорядочное зигзагообразное движение частичек цветочной пыльцы в жидкости), открытое в 1827 английским ботаником Р. Броуном, уже получило тогда статистическое объяснение, но теория Эйнштейна (который не знал предшествующих работ по броуновскому движению) имела законченную форму и открывала возможности количественных экспериментальных исследований. В 1908 эксперименты Ж. Б. Перрена полностью подтвердили теорию Эйнштейна, что сыграло важную роль для окончательного становления молекулярно-кинетических представлений.Кванты и фотоэффектВ том же 1905 вышла и другая работа Эйнштейна - "Об одной эвристической точке зрения на возникновение и превращение света". За пять лет до этого М. Планк показал, что спектральный состав излучения, испускаемого горячими телами, находит объяснение, если принять, что процесс излучения дискретен, то есть свет испускается не непрерывно, а дискретными порциями определенной энергии. Эйнштейн выдвинул предположение, что и поглощение света происходит теми же порциями и что вообще "однородный свет состоит из зерен энергии (световых квантов),... несущихся в пустом пространстве со скоростью света". Эта революционная идея позволила Эйнштейну объяснить законы фотоэффекта, в частности, факт существования "красной границы", то есть той минимальной частоты, ниже которой выбивания светом электронов из вещества вообще не происходит.Идея квантов была применена Эйнштейном и к объяснению других явлений, например, флуоресценции, фотоионизации, загадочных вариаций удельной теплоемкости твердых тел, которые не могла описать классическая теория.Работы Эйнштейна, посвященные квантовой теории света, были удостоены в 1921 Нобелевской премии. Частная (специальная) теория относительностиНаибольшую известность Эйнштейну все же принесла теория относительности, изложенная им впервые в 1905, в статье "К электродинамике движущихся тел". Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики.Эйнштейн выдвинул удивительный и на первый взгляд парадоксальный постулат, что скорость света для всех наблюдателей, как бы они ни двигались, одинакова. Этот постулат (при выполнении некоторых дополнительных условий) приводит к полученным ранее Х. Лоренцем формулам для преобразований координат и времени при переходе из одной инерциальной системы отсчета в другую, движущуюся относительно первой. Но Лоренц рассматривал эти преобразования как вспомогательные, или фиктивные, не имеющие непосредственного отношения к реальному пространству и времени. Эйнштейн понял реальность этих преобразований, в частности, реальность относительности одновременности.Таким образом, принцип относительности, установленный для механики еще Галилеем, был распространен на электродинамику и другие области физики. Это привело, в частности, к установлению важного универсального соотношения между массой М, энергией Е и импульсом Р: E2= М2 c4 + P2с2 (где с - скорость света), которое можно назвать одной из теоретических предпосылок использования внутриядерной энергии.Профессорская деятельность. Приглашение в Берлин. Общая теория относительностиВ 1905 Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1909 он избран профессором Цюрихского университета, а через два года - Немецкого университета в Праге. В 1912 Эйнштейн возвратился в Цюрих, где занял кафедру в Политехникуме, но уже в 1914 принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М. Гроссмана в 1912 появилась статья "Набросок обобщенной теории относительности", а окончательная формулировка теории датируется 1915. Эта теория, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Опираясь на всем известный факт, что "тяжелая" и "инертная" массы равны, удалось найти принципиально новый подход к решению проблемы, поставленной еще И. Ньютоном: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия.Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама "геометрия" пространства - времени. Любое массивное тело, по Эйнштейну, вызывает вокруг себя "искривление" пространства, то есть делает его геометрические свойства иными, чем в геометрии Евклида, и любое другое тело, движущееся в таком "искривленном" пространстве, испытывает воздействие первого тела.Общая теория относительности привела к предсказанию эффектов, которые вскоре получили экспериментальное подтверждение. Она позволила также сформулировать принципиально новые модели, относящиеся ко всей Вселенной, в том числе и модели нестационарной (расширяющейся) Вселенной.ЭмиграцияНе без колебаний принял Эйнштейн предложение переехать в Берлин. Но возможность общения с крупнейшими немецкими учеными, в числе которых был и Планк, привлекала его.Политическая и нравственная атмосфера в Германии делалась все тягостнее, антисемитизм поднимал голову, и когда власть захватили фашисты, Эйнштейн в 1933 навсегда покинул Германию. Впоследствии в знак протеста против фашизма он отказался от германского подданства и вышел из состава Прусской и Баварской Академий наук. В берлинский период, кроме общей теории относительности, Эйнштейном была разработана статистика частиц целого спина, введено понятие вынужденного излучения, играющего важную роль в лазерной физике, предсказано (совместно с де Гаазом) явление возникновения вращательного импульса тел при их намагничивании и др. Однако, будучи одним из создателей квантовой теории, Эйнштейн не принял вероятностной интерпретации квантовой механики, полагая, что фундаментальная физическая теория не может быть статистической по своему характеру. Он нередко повторял, что "Бог не играет в кости" со Вселенной.Переехав в США, Эйнштейн занял должность профессора физики в новом институте фундаментальных исследований в Принстоне (штат Нью-Джерси). Он продолжал заниматься вопросами космологии, а также усиленно искал пути построения единой теории поля, которая бы объединила гравитацию, электромагнетизм (а возможно, и остальное). И хотя реализовать эту программу ему не удалось, это не поколебало репутации Эйнштейна как одного из величайших естествоиспытателей всех времен.В Принстоне Эйнштейн стал местной достопримечательностью. Его знали как физика с мировым именем, но для всех он был скромным, приветливым и несколько эксцентричным человеком, с которым можно было столкнуться прямо на улице. В часы досуга он любил музицировать. Начав учиться игре на скрипке в шесть лет, Эйнштейн продолжал играть всю жизнь, иногда в ансамбле с другими физиками. Ему нравился парусный спорт, который, как он полагал, необыкновенно способствует размышлениям над физическими проблемами. Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952, которое он не принял.Будучи последовательным сторонником сионизма, Эйнштейн приложил немало усилий к созданию Еврейского университета в Иерусалиме в 1925.В умах многих людей имя Эйнштейна связано с атомной проблемой. Действительно, понимая, какой трагедией для человечества могло бы оказаться создание в фашистской Германии атомной бомбы, он в 1939 направил президенту США письмо, послужившее толчком для работ в этом направлении в Америке. Но уже в конце войны его отчаянные попытки удержать политиков и генералов от преступных и безумных действий оказались тщетными. Это было самой большой трагедией его жизни.Эйнштейн скончался в Принстоне от аневризмы аорты.Литература: Кузнецов Б. Г. Эйнштейн: жизнь, смерть, бессмертие. М., 1972.Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М., 1989.Френкель В. Я., Явелев Б. Е. Изобретения и эксперименты. М., 1990.В. Н. Григорьев... смотреть

ЭЙНШТЕЙН (EINSTEIN) АЛЬБЕРТ (18791955)

ЭЙНШТЕЙН (Einstein) Альберт (1879-1955), физик-теоретик, один из основателей современной физики, иностранный член-корреспондент РАН (1922) и иностранный почетный член АН СССР (1926). Родился в Германии, с 1893 жил в Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную (1905) и общую (1907-16) теории относительности. Автор основополагающих трудов по квантовой теории света: ввел понятие фотона (1905), установил законы фотоэффекта, основной закон фотохимии (закон Эйнштейна), предсказал (1917) индуцированное излучение. Развил статистическую теорию броуновского движения, заложив основы теории флуктуаций, создал квантовую статистику Бозе - Эйнштейна. С 1933 работал над проблемами космологии и единой теории поля. В 30-е гг. выступал против фашизма, войны, в 40-е - против применения ядерного оружия. В 1940 подписал письмо президенту США, об опасности создания ядерного оружия в Германии, которое стимулировало американские ядерные исследования. Один из инициаторов создания государства Израиль. Нобелевская премия (1921, за труды по теоретической физике, особенно за открытие законов фотоэффекта).... смотреть

ЭЙНШТЕЙН (EINSTEIN) АЛЬБЕРТ (18791955)

ЭЙНШТЕЙН (Einstein) Альберт (1879-1955) , физик-теоретик, один из основателей современной физики, иностранный член-корреспондент РАН (1922) и иностранный почетный член АН СССР (1926). Родился в Германии, с 1893 жил в Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную (1905) и общую (1907-16) теории относительности. Автор основополагающих трудов по квантовой теории света: ввел понятие фотона (1905), установил законы фотоэффекта, основной закон фотохимии (закон Эйнштейна), предсказал (1917) индуцированное излучение. Развил статистическую теорию броуновского движения, заложив основы теории флуктуаций, создал квантовую статистику Бозе - Эйнштейна. С 1933 работал над проблемами космологии и единой теории поля. В 30-е гг. выступал против фашизма, войны, в 40-е - против применения ядерного оружия. В 1940 подписал письмо президенту США, об опасности создания ядерного оружия в Германии, которое стимулировало американские ядерные исследования. Один из инициаторов создания государства Израиль. Нобелевская премия (1921, за труды по теоретической физике, особенно за открытие законов фотоэффекта).... смотреть

ЭЙНШТЕЙН (EINSTEIN) АЛЬФРЕД

Эйнште́йн (Einstein) Альфред (1880—1952), немецкий музыковед. Двоюродный брат А. Эйнштейна. В 1933 эмигрировал, с 1939 в США. Исследователь главным обр... смотреть

ЭЙНШТЕЙН А.

        (Einstein) Альфред (30 XII 1880, Мюнхен - 13 II 1952, Эль-Серрито, Калифорния) - нем. музыковед, критик и библиограф. Двоюродный брат физика Ал... смотреть

ЭЙНШТЕЙН (АЛЬБЕРТ)

физик немецкого происхождения (Ульм, 1879 — Принстон, 1955). Автор теории относительности времени и пространства; оказал на философию нашего времени такое же сильное и продолжительное влияние, как, например, в свое время Коперник, который в XVI в. поведал людям, что они живут вовсе не в центре мира. Таким образом, можно ли говорить об «эйнштейновой революции»: принцип относительности феноменов, в сущности, идет в том же направлении, но еще дальше, чем принцип «относительности познания», робко выдвигавшийся философами и учеными XVIII и XIX вв., от Ньютона до Конта. Однако следует иметь в виду, что теория относительности не является ни философской теорией об универсуме, ни метафизикой науки; это научное объяснение мира. Обобщение относительности означает утверждение связей между всеми феноменами универсума (в частности, между гравитацией и электромагнетизмом), оно объединяет все данные науки.... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ

род. 14 марта 1879, Ульм - ум. 18 апр. 1955, Принстон, Нью-Джерси) - нем.-амер. физик-теоретик; с 1914 - профессор в Берлине, с 1933 - в Принстоне. Разработал специальную (1905) и общую (1916) теорию относительности. Открытие Эйнштейном световых квантов подтвердило квантовую теорию Планка. Работы Эйнштейна имеют огромное значение для современной физики, в первую очередь для атомной физики. Не менее важны они также для теории естественных наук и для современной метафизики. Помимо прочих работ, Эйнштейн написал: "Die Evolution der Physik" (совместно с Л. Инфельдом) (рус. пер. "Эволюция физики", 1948); "Aus meinen spдteren Jahren" (статьи, письма, выступления), 1952. ... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ

физик немецкого происхождения (Ульм, 1879 — Принстон, 1955). Автор теории относительности времени и пространства; оказал на философию нашего времени такое же сильное и продолжительное влияние, как, например, в свое время Коперник, который в XVI в. поведал людям, что они живут вовсе не в центре мира. Таким образом, можно ли говорить об «эйнштейновой революции»: принцип относительности феноменов, в сущности, идет в том же направлении, но еще дальше, чем принцип «относительности познания», робко выдвигавшийся философами и учеными XVIII и XIX вв., от Ньютона до Конта. Однако следует иметь в виду, что теория относительности не является ни философской теорией об универсуме, ни метафизикой науки; это научное объяснение мира. Обобщение относительности означает утверждение связей между всеми феноменами универсума (в частности, между гравитацией и электромагнетизмом), оно объединяет все данные науки. ... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ

(14 марта 1879 – 18 апр. 1955) – физик-теоретик, создатель относительности теории и др. фундаментальных физич. теорий. Род. в Ульме в Германии; в 1900 окончил Цюрихский политехникум. С 1902 служил в Патентном бюро в Берне. Годы службы в Берне были временем разработки теории т.н. броуновского движения, теории электромагнитного излучения (Э. доказал дискретность излучения, существование квантов электромагнитного поля, квантов света, получивших впоследствии название фотонов) и специальной теории относительности, к-рая была гл. итогом первого периода творч. жизни Э. Второй период, включающий его пребывание в Праге и в Цюрихе в качестве профессора и отчасти годы, проведенные в Берлине в качестве директора исследовательского ин-та, был временем разработки общей теории относительности – новой теории тяготения. Она была сформулирована в сравнительно законченном виде в 1916. С этого времени в Э. начинают видеть одного из крупнейших мыслителей эпохи, создателя новой науч. картины мира. В творчестве Э. с 20-х гг. начинается новый период. Его гл. содержание – поиски единой теории поля, выводящей из общих принципов существование не только поля тяготения, но и др. полей, прежде всего электромагнитного поля (см. Поле физическое). Одновременно Э. критикует то направление в физике микромира – в квантовой механике, к-рое исходит из невозможности точного определения динамических переменных частицы. Этот период охватывает 20-е гг., проведенные в Берлине, и свыше тридцати лет жизни в Принстоне, куда Э. переселился в годы нацистской реакции (1933). Попытки Э. создать единую теорию поля не привели к положит. результатам, но они стимулировали дальнейшее развитие квантовой механики (Н. Бор, постоянный оппонент Э. в дискуссиях о квантовой механике, отмечал такое воздействие критики и идей Э.) и позднейшие поиски общей теории элементарных частиц. Творчество Э. оказало глубокое влияние не только на развитие физики, космологии, механики и математики в 20 в., но и на стиль науч. мышления в целом. Вместе с тем гуманизм Э., его борьба против национализма и милитаризма сделали его имя и образ ученого близкими всему прогрессивному человечеству. Филос. воззрения Э. формировались под влиянием идей Юма и особенно Спинозы. Науч. исследования Э. сделали его противником филос. априоризма Канта: общая теория относительности противоречит представлению об априорном характере пространства и времени. Признавая справедливой данную Э. Махом критику ньютонова абс. пространства и разделяя в течение недолгого времени филос. позиции Маха, Э. впоследствии выступил против его позитивизма, как и против реформированного махизма венского кружка. Выступления Э. против позитивизма были тесно связаны с методологич. принципами, к-рые он положил в основу разработки своих физич. идей. Для Э. предметом познания служит объективный, существующий независимо от познающего духа материальный мир. Этот мир является не хаосом, а космосом, – он упорядочен универсальной причинной связью всех процессов, в мире царит каузальная гармония. Ощущение такой гармонии Э. иногда называл "космической религией", но сопровождал эту терминологич. уступку отчетливыми заявлениями об атеистич. характере такой "религии", о том, что в природе нет бога и что она представляет собой движущуюся материю, существование и эволюция к-рой подчинены каузальной гармонии. Чтобы понять эту гармонию, нужно не ограничиваться чисто эмпирич. данными, а идти к обобщениям. Физич. теория становится ближе к неисчерпаемому объекту науки, к космич. гармонии, когда она вытекает из возможно более общих исходных принципов. В естественном выведении физич. теории из наиболее общих принципов Э. видел ее "внутреннее совершенство". Но исходные принципы и понятия должны хотя бы в принципе приводить при своем логич. развитии к выводам, допускающим экспериментальную проверку. Соответствие наблюдениям Э. назвал "внешним оправданием" физич. теории. С т. зр. этих не отделимых один от другого критериев выбора физич. теории, классич. физика оказалась лишенной "внешнего оправдания": электродинамические и оптич. опыты показали, что движение тела по отношению к эфиру не может быть зарегистрировано, и вместе с тем потеряли смысл понятия абсолютной одновременности, абсолютного времени, пространства и движения. Лоренц объяснил результаты эксперимента в духе классич. физики специально созданной для этого искусственной гипотезой. Э. дал объяснение этих результатов, исходя из весьма общих представлений в рамках теории относительности, обладающей высоким "внутренним совершенством" и получившей прочное "внешнее оправдание" – непререкаемые и разнообразные экспериментальные подтверждения. Соч. в рус. пер.: Собр. научных трудов, т. 1–4, М., 1965–67. Лит.: Зелиг К., А. Эйнштейн, пер. с нем., 2 изд., М., 1966; Гернек Ф., А. Эйнштейн, [пер. с нем.], М., 1966; Кузнецов Б. Г., Эйнштейн, [3 изд.], М., 1967. Б. Кузнецов. Москва. ... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ

1879-1955) – немецко-швейцарско-американский физик  основоположник  современной  релятивистской  физики,  разработавшийспециальную (1905) и общую (1915) теории относительности, лауреат Нобелевской премии (1921). Его первые работы были посвящены силам взаимодействия между молекулами и приложениям статистической термодинамики. Одна из них– «Новое определение размеров молекул» – была принята в качестве докторскойдиссертации  Цюрихским  университетом.  Одна  из  его  работ  была  посвящена объяснению броуновского  движения – хаотического зигзагообразного движения частиц, взвешенных в жидкости. Он предсказал, что  наблюдение броуновского движения позволяет вычислить массу и число молекул, находящихся в данном объеме. Через несколько лет это было подтверждено Жаном Перреном. В другой работе  предлагалось объяснение  фотоэлектрического эффекта –  испускания электронов металлической поверхностью под действием электромагнитного излучения  в  ультрафиолетовом или  каком-либо  другом диапазоне. Идея  Эйнштейна состояла в том, чтобы установить соответствие между фотоном (квантом электромагнитной энергии) и энергией выбитого с поверхности металла электрона.  Каждый  фотон  выбивает  один  электрон.  Кинетическая  энергия  электрона (энергия, связанная с его скоростью) равна энергии, оставшейся от энергии фотона за вычетом той ее части, которая израсходована на то, чтобы вырвать электрон из металла. Чем ярче свет,  тем больше фотонов и больше число выбитых с поверхности  металла  электронов, но  не  их  скорость.  Более  быстрые  электроны можно получить, направляя на поверхность металла излучение с большей частотой, так как фотоны такого излучения содержат больше энергии. Эйнштейн выдвинул еще одну смелую гипотезу, предположив, что свет обладает двойственной природой. Работы Эйнштейна позволили объяснить  флуоресценцию, фотоионизацию и загадочные вариации удельной теплоемкости твердых тел при различных температурах. Третья, поистине замечательная работа Э., опубликованная все в том же 1905 г. – специальная  теория относительности, революционизировавшая все области физики. В то время большинство физиков  полагало, что световые волны распространяются в эфире – загадочном веществе, которое, как принято было  думать, заполняет всю Вселенную. Однако обнаружить эфир экспериментально никому не удавалось.  Поставленный в 1887 г. Альбертом А. Майкельсоном и Эдвардом Морли эксперимент по обнаружению различия в скорости света, распространяющегося  в  гипотетическом  эфире  вдоль  и  поперек  направления движения Земли, дал отрицательный результат. Выводы, сделанные в результате экспериментов,  изменили  представления  о  пространстве  и  времени:  ни  один материальный объект не может двигаться быстрее света; с точки зрения стационарного наблюдателя, размеры движущегося объекта сокращаются в направлении движения, а масса объекта возрастает, чтобы скорость света была одинаковой для движущегося  и  покоящегося  наблюдателей,  движущиеся  часы  должны  идти медленнее. Даже понятие стационарности подлежит тщательному пересмотру. Из других выводов, к которым приводит специальная теория относительности, заслуживает внимание  эквивалентность массы и энергии. Масса m представляет собой своего рода «замороженную» энергию E, с которой связана соотношением E = mc2, где c – скорость света. Таким образом, испускание фотонов света происходит ценой уменьшения массы источника. Релятивистские эффекты, как правило,  пренебрежимо  малые  при  обычных  скоростях,  становятся  значительными только при больших, характерных для атомных и субатомных  частиц. Потеря массы, связанная с испусканием света, чрезвычайно мала и обычно не поддается измерению  даже с помощью самых чувствительных химических весов. Однако специальная  теория  относительности  позволила  объяснить  такие  особенности процессов, происходящих в атомной и ядерной физике, которые до того оставались непонятными. Почти через сорок лет после создания теории относительности физики, работавшие над созданием атомной бомбы, сумели вычислить количество выделяющейся при ее взрыве  энергии на основе дефекта (уменьшения) массы при расщеплении ядер урана. После напряженных усилий Э.  удалось в1915 г. создать общую теорию относительности, выходившую далеко за рамки специальной теории, в которой движения должны быть равномерными, а относительные скорости постоянными. Общая теория относительности охватывала все возможные движения, в том числе и ускоренные (т.е. происходящие с переменнойскоростью). Господствовавшая ранее механика, берущая начало из работ Исаака Ньютона (XVII в.), становилась частным случаем, удобным для описания движения при относительно малых скоростях. Э. пришлось заменить многие из введенных Ньютоном понятий. Общая теория относительности Эйнштейна  замениланьютоновскую теорию гравитационного притяжения тел пространственновременным  математическим  описанием  того,  как  массивные  тела  влияют  на характеристики пространства  вокруг себя. Согласно этой точке зрения, тела непритягивают друг друга, а изменяют геометрию пространства-времени, которая и определяет движение проходящих через него тел. Как однажды заметил коллега Э., американский физик Дж. А. Уилер,  «пространство  говорит материи, как ейдвигаться, а материя говорит пространству, как ему искривляться». Основные положения специальной  теории относительности следующие: 1) пространственно-временные отношения связаны с системами отсчета; 2) при скоростях близкихк скорости света при переходе из одной системы отсчета в другую пространственно-временные свойства  меняются; 3) в материальных системах движущихся при скоростях близких к скорости света время течет медленнее, чем в системах,покоящихся относительно них. Общая теория относительности была разработанаЭйнштейном в 1916 г. Ее основные положения следующие: 1) разработано четырехмерное пространство; 2) масса и энергия неразрывно связаны; 3) с возрастанием скорости длина тела сокращается. ... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ

1879-1955) - физик немецкого происхождения. Автор теории относительности времени и пространства, представляющей собой научное объяснение мира. Обобщение относительности означает утверждение связей между всеми феноменами универсума ( в частности, между гравитацией и электоромагнетизмом), оно объединяет все данные науки. ... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ

(1879—1955) — выдающийся нем.-амер. физик-теоретик, один из создателей совр. физики и неклассич. естествознания в целом. Род. в г.Ульм (Германия). В 1896—1900 гг. учился на физ.-матем. ф-те Цюрихского политехникума, в 1902—08 гг. работал техн. экспертом патентного бюро в Берне, в 1909—13 гг. — проф. Цюрихского, Пражского и вновь Цюрихского ун-тов, с 1914 по 33 гг. — проф. Берлинского ун-та и дир. Ин-та физики. После прихода к власти нацистов подвергся гонениям и эмигрировал в США, где с 1933 г. и до конца жизни работал в Принстонском ин-те высших исследований. В 1905 г. в «Анналах физики» были опубл. 5 основополагающих науч. работ Э., в т.ч. «К электродинамике движущихся тел», в к-рой были изложены основы спец. теории относительности (см. Относительности теория) (СТО) — теории движения тел, когда их скорость сравнима со скоростью света. В основе СТО лежат два постулата: 1. Принцип относительности Э.; 2. Постулат постоянства скорости света. 1-й постулат распространял принцип относительности Галилея на любые физ. явления. Это означало, что во всех инерциальных системах отсчета все физ. явления протекают совершенно одинаково. Во 2-м постулате утверждалось, что скорость света в вакууме не зависит от движения источника света и наблюдателя и во всех инерциальных системах одинакова по всем направлениям. Из этих постулатов следовало, что пространство и время относительны (длина тела, напр., будет разной в разных системах отсчета, время в разных системах отсчета течет по-разному), они взаимосвязаны и образуют четырехмерный мир; масса тел зависит от скорости их движения. Оказалось, что скорость света в вакууме явл. предельной скоростью, существующей в природе. В статье, вышедшей вслед за этой, Э. опубликовал знаменитую формулу, связывающую массу тела с содержащейся в теле энергией (Е = mc2). Все это было принципиально ново, вело к ломке старых представлений, вызывая непонимание и острые дискуссии. Вскоре стало ясно, что СТО не отбросила механику Ньютона, а установила лишь границы ее применимости: механика Ньютона явл. частным случаем СТО, когда скорость движения намного меньше скорости света. В этом случае все формулы СТО переходят в формулы классич. механики. Велика роль Э. в создании квантовой теории. Для объяснения з-нов фотоэффекта он расширил квантовую гипотезу Планка, считая, что энергия (свет) не только излучается квантами, но распространяется и поглощается тоже квантами. Световой квант в дальнейшем получил название фотон. След-но, свет — это поток фотонов (фотонная теория света, 1905). В результате было получено осн. уравнение фотоэффекта (уравнение Э., Нобелевская премия 1922 г.). На основе квантовых представлений разработал первую квантовую теорию теплоемкости твердых тел (1907). Совместно с М.Смолуховским разработал теорию броуновского движения (1905), а в 1924—25 гг. создал статистику частиц с целым спином (статистика Бозе—Э.). В 1916 г. создал общую теорию относительности (ОТО), предсказал явление индуцированного излучения, постулировал существование гравитационных волн. ОТО явл. совр. теорией тяготения. В ее основании лежат два принципа: 1. Принцип относительности распространен на все движущиеся системы отсчета. Принцип постоянства скорости света ограничен областями, где гравитационными силами можно пренебречь. 2. Принцип эквивалентности инертной и гравитационной массы тела. Из ОТО следовал ряд выводов: 1. Свойства пространства—времени зависят от движущейся материи. 2. Луч света должен искривляться в поле тяготения. 3. Частота света под действием поля тяготения должна изменяться. Экспериментальное подтверждение этих выводов явилось триумфом ОТО. Исходя из этой теории ученый в 1917 г. предложил новую модель Вселенной, согл. к-рой она представляет замкнутое трехмерное пространство конечного объема и неизменна во времени (стационарная модель Вселенной). Однако в 1922 г. сов. физик-теоретик А.А.Фридман обнаружил ошибку в решении космологических уравнений и пришел к выводу о нестационарности Вселенной. Расширение Вселенной было подтверждено астр. наблюдениями в 1929 г. (см. Хаббл). Начиная с 1933 г., Э. занимается проблемами космологии и единой теории поля. Несмотря на огромный труд в течение более 30 лет его попытки установить связь между электромагнетизмом и гравитацией окончились неудачей. (На сегодня создана единая теория сильного, слабого и электромагнитного взаимодействий. С включением в нее гравитационного взаимодействия по-прежнему возникают трудности. Гипотетическими объектами остаются гравитон — переносчик гравитационного взаимодействия и гравитационные волны). В 1939 г. Э. подписал письмо президенту США Ф.Д.Рузвельту, где указывал на возможность использования реакции деления урана для создания атомной бомбы, строительства атомных электростанций, использования атомной энергии для движения судов. Ученые просили выделить на это необходимые средства и ускорить темп работ, боясь, что в Германии сделают это раньше. Э. глубоко переживал трагедию Хиросимы и Нагасаки. В апреле 1955 г. он подписал обращение к правительствам США, Англии, СССР, Франции, Канады и Китая с предостережением человечества от самоубийства, к к-рому может привести создание и распространение ядерного и термоядерного оружия. Был чл. мн. АН и науч. об-в, в т.ч. АН СССР (1926), обладателем мн. именных наград. Соч.: Собр. науч. трудов: В 6 т. М., 1964—1971; Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965; Как создавалась теория относительности // Эйнштейновский сборник: 1980—1981. М., 1985. Лит.: Дягилев Ф.М. Становление науки и ее методологии. Нижневартовск, 2002; Мицук О. Альберт Эйнштейн. Минск, 1998; Храмов Ю.А. Физика. Биографический справочник. М., 1983. Ф.М.Дягилев ... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ

(физик-теоретик, создатель теории относительности, «великий преобразователь естествознания» (Ленин В. И. ПСС, т. 45, с. 29). Открытия Э. легли в основу новой, квантово-релятивист. картины мира, имеющей огромное материалистич. мировоззренч. значение. Э., будучи стихийным материалистом, отвергал все религ.. догматы, однако в своих произведениях и высказываниях употреблял такие термины, как «космическая религия», под к-рой понимал восхищение стройностью и красотой законов природы, «религиозность», к-рую трактовал как стремление сверхличного характера. Происхождение религии Э. связывал с чувством страха, не видел соц. корней религии в бурж. об-ве. ... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ

(14.3.1879, Ульм, Германия 18.4.1955, Принстон, США), один из основоположников совр. физики. В 1900 окончил политехникум в Цюрихе. В 1902-09 работал в патентном бюро в Берне. В дальнейшем вёл педагогич. и науч. работу в Бернском, Женевском, Пражском и Берлинском ун-тах. После прихода в Гер.мании к власти нацистов эмигрировал в США. Э. был создателем спец. и общей теории относительности, квантовой теории света. Теоретич. исследования Э. в различных областях физики имели огромное философскометодологич. значение. Его идеи послужили основой для выработки новой, материалистич. картины мира, исходящей из органич. связи пространства и времени с материей и её движением. Э. стоял на позициях естеств.-науч. материализма. По собств. признанию, определ. влияние на его филос. мировоззрение оказали Кант, Юм, Мах. Знакомство с работами Юма стимулировало у Э. критич. отношение к ньютоновской механике. Принцип наблюдаемости послужил Э. основой для критики ньютоновской концепции ненаблюдаемого абс. пространства и разработки операционального определения одновременности. Наиболее характерная особенность мировоззрения Э.рационализм. Как гносеологич. концепция рационализм у Э. связан с утверждением автономии логико-теоретич. знания по отношению к эмпирическому (в смысле признания невозможности индуктивного выведения первого из второго). Эту форму рационализма Э. связывал с философией Канта, хотя сама по себе она глубоко отлична от кантовского априоризма. Концепция онтологич. рационализма, развиваемая Э. учение о рациональной структуре и гармонии мира. Природа, согласно Э., представляет собой строго детерминированную систему, исключающую элементы неопределённости и случайности. Исходя из подобного представления, восходящего к Спинозе, Э. полагал, что вероятностные законы квантовой механики свидетельствуют о её неполноте. Рационализм Э. нашёл выражение в его взглядах на идеал физич. теории, к-рый он мыслил как единую теорию геометризованного поля. Э. занимал прогрессивные обществ.-иолитич. позиции, активно выступал против нацизма, за мир и дружбу между народами.... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ

Эйнштейн Альберт (Einstein) Эйнштейн Альберт (Einstein, Albert) (1879 - 1955) Немецкий физик. Афоризмы, цитаты - Эйнштейн Альберт - биография (Einstein... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ

Эйнштейн (Einstein) Альберт (14.3.1879, Ульм, Германия, ‒ 18.4.1955, Принстон, США), физик, создатель относительности теории и один из создателей квант... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ (18791955)

выдающийся мыслитель 20 в., создатель физической теории пространства, времени и гравитации, для которой исторически утвердилось название *теория относительности Э.*. Нобелевская премия по физике за заслуги в области теоретической физики и особенно за открытие законов фотоэффекта (1921). Член научных обществ многих стран мира, в том числе член Прусской Академии наук (1913-1933), почетный иностранный член Академии наук СССР (с 1927). Родился в г. Ульм (Германия) в семье инженера, переехавшего в Швейцарию (1893). Окончил Политехнический институт в Цюрихе (1900). Преподаватель гимназии (1900-1902), эксперт Федерального Бюро патентов в Берне (1902-1909), профессор Университета Цюриха (1909-1911), занимал кафедру теоретической физики в Немецком университете в Праге (1911-1912), профессор Политехнического института в Цюрихе (1912-1914), директор Физического института и профессор Университета Берлина (19141933). В 1933 Э. эмигрировал в США, отказавшись от германского подданства и членства в Прусской Академии наук в связи с преследованиями его со стороны идеологов национал-социализма как ученого, общественного деятеля и еврея. С 1933 и до ухода из жизни Э. профессор Принстонского института фундаментальных исследований. В конце 1940-х отказался от предложения стать первым Президентом государства Израиль. Антивоенную деятельность Э. начал в начале 1930-х совместно с А.Барбюсом, М.Горьким, Р.Ролланом. Э. один из лидеров Пагуошского движения, соавтор *Манифеста Рассела Э.* (1934). Известны также его высказывания против применения ядерной энергии в военных целях. Главные труды: *К электродинамике движущихся сред* (1905), *Вокруг теории относительности* (1921), *О современном кризисе теоретической физики* (1922), *Мир, каким я его вижу* (1934), *Физика и реальность* (1936), *Эволюция физики* (1940, в соавт. с Л.Инфельдом), *Сущность теории относительности* (1945) и др. В бернском периоде своей деятельности Э. установил глубокую связь между диффузией и броуновским движением, разработав к 1905 фундаментальную (молекулярно-статистическую) теорию флуктуационных процессов. В квантовой теории Э. выдвинул основополагающую концепцию о том, что *световое поле представляет собой совокупность элементарных световых полей фотонов или квантов света, независимо излученных телами и независимо же поглощаемых ими*, тем самым введя фотонную концепцию квантовой структуры поля излучения (1905), что позволило ему на этой основе открыть законы фотоэффекта и люминесценции. И только после создания целостной теории квантовой механики и квантовой электродинамики (1925-1928) было снято противоречие между волновой природой и квантовой структурой светового излучения. На основе фотонной теории Э. к проблемам статистической физики *были применены закономерности квантовой теории*, что привело его к созданию квантовой статистики и решению многих проблем термодинамики (1907). В 1917 Э. выдвинул концепцию индуцированного светового излучения, в котором *вероятность испускания фотона возбужденным атомом существенно зависит от количества таких фотонов, уже имеющихся вблизи атома*. Выдающимся достижением Э. явилось создание физической теории пространства, времени и гравитации теории относительности. (Вплоть до конца 19 в. было принято считать, что объекты материального мира состоят из материальных точек, которые взаимодействуют между собой. Под воздействием приложенных сил материальные точки находятся в непрекращающемся движении, к которому сводятся все наблюдаемые явления. Такую концепцию мира Э. считал тесно связанной с наивным реализмом, сторонники которого полагали, по его мнению, что объекты внешнего мира даются человеку непосредственно чувственным восприятием. Однако введение материальных точек означало шаг к более *изощренному реализму*, потому что введение подобных атомистических элементов не основано на непосредственных наблюдениях.) Господствовавшие до Э. ньютонианские представления конца 17 в. реально не противоречили фактам действительности до тех пор, пока исследователи в физических науках не приступили к изучению объектов, движущихся со скоростями V, для которых невозможно пренебречь величинами порядка (V/С)2, где С скорость света. Результаты экспериментов, противоречившие теориям классической физики (например, опыт Майкельсона измерения скорости света и др.), Э. объяснил на основании общих свойств пространства и времени, показав при этом, что одним из следствий этих свойств является изменение протяженностей материальных объектов и промежутков времени при изменениях состояния движения материальных объектов. Таким образом, следующий шаг в процессе изменения физической картины мира был и сделан самим Э. в специальной теории относительности (далее СТО). Э. показал, что для согласования теоретических представлений с опытом следует отказаться от понятий абсолютного пространства (эфира) и времени, и ввел понятие относительного характера длины, интервала времени и одновременности. В основу СТО легли два постулата: принцип относительности и принцип постоянства скорости света. Принцип относительности состоит в том, что все законы природы одинаковы во всех инерциальных системах отсчета, т.е. в системах, движущихся с постоянной скоростью. Этот принцип имел экспериментальное обоснование, состоявшее в отрицательном результате опыта Майкельсона, в котором он пытался обнаружить движение Земли относительно абсолютного пространства (эфира). Принцип постоянства скорости света был введен Э. без экспериментального обоснования. Э. показал, что для согласования этих двух постулатов следует отказаться от идеи о абсолютном характере одновременности, длин и промежутков времени, которые, как оказалось, зависят от состояния системы отсчета. Таким образом, понятие эфира и абсолютного пространства стали ненужными. В рамках СТО время потеряло свой абсолютный характер и стало рассматриваться как параметр, алгебраически подобный пространственным координатам. В физику было введено понятие о четырехмерном пространстве-времени. Пуанкаре в статье *О динамике электрона* (1905, опубликовано в 1906) независимо от Э. вывел и развил математические следствия концепции ковариантности (сохранения формы) законов при преобразованиях от одной инерциальной системы отсчета к другой (постулата относительности), поэтому СТО также называют теорией относительности Э. Пуанкаре. Предметом СТО, согласно работе Э. *К электродинамике движущихся тел*, являются пространственно-временные соотношения при равномерных и прямолинейных (т.е. инерциальных) движениях систем отсчета. В СТО Э. открыл новые законы движения, сводимые к законам Ньютона только в случаях возможности пренебрежения величинами порядка (V/С)2. Там же была дана и теория оптических явлений в движущихся материальных объектах. В дополнении к СТО также была показана пропорциональность массы материального объекта заключающейся в нем энергии (широко известное соотношение E = МхС2, где E энергия, М масса). В своей книге *Сущность теории относительности* Э. писал: *Мы останемся верными принципу относительности в его наиболее широком смысле, если придадим такую форму законам природы, что они окажутся применимыми в любой четырехмерной системе координат*. Основное положение СТО постулирует полную равноправность всех инерциальных систем отсчета, что отвергает существование абсолютного Пространства и абсолютного Времени, концептуализированного в теории Ньютона. Абсолютный смысл имеют только некоторое сочетания неразрывно связанных Пространства и Времени. Математическим выражением этого принципа относительности является ковариантность законов природы. СТО утверждает, что все физические закономерности, имеющие объективное значение, сохраняют свое значение при переходе к любой системе отсчета (в том числе и инерциальной), *если в формулировке этих законов правильно учтены свойства Пространства и Времени*. В СТО ковариантность законов Пространства и Времени рассматривается как отражение их объективного свойства однородности. После СТО Э. начал исследования общих пространственно-временных отношений (в случаях несводимости изменения системы отсчета к переходу из одного инерциального движения в другое и к распространению на этот случай принципов ковариантности законов природы). Э. открыл полную эквивалентность между переходом из инерциальной системы в систему, движущуюся прямолинейно, но неравномерно, с одной стороны,и появлением нового поля гравитирования, с другой. Поэтому проблема ковариантности оказалась полностью включена в проблему гравитации и наоборот. К 1916 Э. создал общую теорию относительности (далее ОТО), которая была фундирована на интеграции принципов эквивалентности и относительности как релятивистская теория гравитации, где выделена неоднородность пространства-времени. Э. доказал, что в присутствии материальных объектов, создающих поле гравитации, метрика (как количественные меры пространства и времени) становится иной, чем в отсутствие таких объектов (например, время замедляется, сумма углов треугольника больше двух прямых и пр.). Переход к другой системе отсчета (движущейся, например, прямолинейно и неравномерно, т.е. неинерциально), эквивалентный введению нового поля гравитирования, соответственно изменяет метрику пространств. Лобачевский еще в первой половине 19 в. показал, что метрика реального пространства может обладать такими отклонениями от обычно принимающейся метрики Евклида (с попытками экспериментального поиска таких отклонений). В ОТО Э. нашел (физическую) причину такого отклонения, дал его математическое выражение и показал, что такие отклонения в метрике реального Пространства невозможно отрывать от соответствующих трансформаций Времени. Теория Э. о пространстве, времени и гравитации показала их неразрывную взаимосвязь, причем в ОТО не всякое гравитирование возможно полностью свести к эффектам стандартной кинематики. Уравнения гравитационного поля в ОТО дефинируют и метрику пространства-времени, и законы движения материальных объектов, являющихся полевыми источниками. Но отклонение метрики пространства от евклидовой и законов движения от законов Ньютона проявляется лишь в сильных гравитационных полях больших масс тел. Поэтому ОТО стала основой исследований проблем космологии, а СТО и квантовая теория основой исследований структур атома, его ядра и элементарных частиц. Изменение представлений о пространстве, времени, гравитации и их взаимосвязях означало отход от теории Ньютона, предполагавшей независимое существование Пространства и Времени, в отрыве от Материи. Э. писал: *согласно ньютоновской системе, физическая реальность характеризуется понятиями пространства, времени, материальной точки и силы (взаимодействия материальных точек)... После Максвелла физическая реальность мыслилась в виде непрерывных, неподдающихся механическому объяснению полей, описываемых дифференциальными уравнениями в частных производных. Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытывала физика со времен Ньютона... Нарисованной мною картине чисто фиктивного характера основных представлений научной теории не придавалось особого значения в 18 и 19 вв. Но сейчас она приобретает все большее значение по мере того, как увеличивается в нашем мышлении расстояние между фундаментальными понятиями и законами, с одной стороны, и выводами, к которым они приводят в отношении нашего опыта, с другой стороны, по мере того, как упрощается логическая структура, уменьшается число логически независимых концептуальных элементов, необходимых для поддержания структуры*. (По мнению Э., основной постулат ОТО, согласно которому общие законы природы должны быть выражены через уравнения, справедливые во всех координатных системах, отнимает у пространства и времени последний остаток физической предметности, и означает, что введение координатной системы служит только для более простого описания совокупности совпадений. Общая теории относительности была подтверждена опытным путем посредством объяснения ряда наблюдаемых явлений: аномального поведения орбиты планеты Меркурий, отклонения лучей света в поле тяготения Солнца и смещения спектральных линий атомов в поле тяготения.) В книге *Эволюция физики* Э., фактически принимая точку зрения Канта, писал: *Физические понятия суть свободные творения человеческого разума, а не определены однозначно внешним миром... В нашем стремлении познать реальность мы отчасти подобны человеку, который хочет понять механизм закрытых часов. Он видит циферблат и движущиеся стрелки... слышит тиканье, но не имеет средств открыть их корпус. ... он может нарисовать себе некую картину механизма, которая бы отвечала всему, что он наблюдает, но он никогда не может быть уверен в том, что его картина единственная, которая могла бы объяснить его наблюдения. Он никогда не будет в состоянии сравнить свою картину с реальным механизмом, и он не может даже представить себе возможность или смысл такого сравнения*. М.Клайн полагал, что *мы в состоянии оценить, сколь велика та часть нашей физической науки, которая была математизирована в форме геометрии... Э. подхватил их /Лобачевского, Бойяи и Римана В.Т., C.C.I идеи, превратив наш физический мир в четырехмерный математический. Гравитация, время и материя наряду с пространством стали компонентами геометрической структуры четырехмерного пространства-времени. Так, уверенность древних греков в том, что реальный мир удобнее и понятнее всего выражать через его геометрические свойства и проникнутое духом Возрождения учение Декарта о том, что феномены материи и движения легко объяснить через геометрию пространства, получили убедительнейшее подтверждение*. В исследованиях Э. всегда значительное место занимали общефилософские проблемы естествознания: *Почему возможно такое превосходное соответствие математики с реальными предметами, если сама она является произведением только человеческой мысли, не связанной ни с каким опытом? Может ли человеческий разум без всякого опыта, путем одного только размышления понять свойства реальных вещей?.. Если теоремы математики прилагаются к отражению реального мира, они не точны; они точны до тех пор, пока не ссылаются на действительность... Однако, с другой стороны, верно и то, что математика вообще и геометрия в частности обязаны своим происхождением необходимости узнать что-либо о поведении реально существующих объектов* (*Вокруг теории относительности*). При этом Э., понимавшего изопытную выводимость логических принципов и математических аксиом, интересовала прекрасная согласованность с опытом тех следствий, которые вытекали из созданных человеком принципов и аксиом. Первое собственное объяснение эффективности математики Э. предлагал еще в 1918: *История показала, что из всех мыслимых построений в данный момент только одно оказывается преобладающим. Никто из тех, кто действительно углублялся в предмет, не станет отрицать, что теоретическая система практически однозначно определяется миром наблюдений, хотя никакой логический путь не ведет от наблюдений к логическим принципам теории. В этом суть того, что Лейбниц удачно назвал *предустановленной гармонией*. Размышления о природе математики и потере ее прежнего статуса свода общепринятых базисных истин склонили Э. к концепции созданной человеком математики: *каждый, кто осмеливается взять на себя роль судьи во всем, что касается Истины и Знания, терпит крушение под смех Богов*. Э. писал относительно существования внешней реальности и надежности нашего знания о ней: *Вера в существование внешнего мира, независимого от воспринимающего субъекта, лежит в основе всего естествознания. Но так как чувственное восприятие дает информацию об этом внешнем мире, или о *физической реальности*, опосредствовано, мы можем охватить последнюю только путем рассуждений*; т.е. для Э. опыт носит личностный характер и потому не может служит доказательством существования внешней реальности. Будучи убежденным в том, что конструируемая человеком математика определяется реальностью, Э. писал: *Если бы даже оказалось, что мир идей нельзя вывести из опыта логическим путем, а что в определенных пределах этот мир есть порождение человеческого разума, без которого никакая наука невозможна, все же он столь же мало был бы независим от природы наших ощущений, как одежда от формы человеческого тела*. Концепция более поздних исследований Э. отражена в его книге *Мир, каким я его вижу*, где он отмечал: *Весь предшествующий опыт убеждает нас в том, что природа представляет собой реализацию простейших математически мыслимых элементов. ...Посредством чисто математических конструкций мы можем найти те понятия и закономерные связи между ними, которые дадут нам ключ к пониманию явлений природы. Опыт может подсказать нам соответствующие математические понятия, но они ни в коем случае не могут быть выведены из него. Конечно, опыт остается единственным критерием пригодности математических конструкций физики. Но настоящее творческое начало присуще именно математике. Поэтому я считаю в известном смысле оправданной веру древних в то, что чистое мышление в состоянии постигнуть реальность*. Этим тезисом Э. может только констатировать существование некоторых законов вне нас. Свое убеждение Э. основывает и на собственном широко известном неверии в то, что *Бог играет в кости* (а если бы это было и так, то по этому поводу еще Р.У.Эмерсон сказал, что *кости Господа Бога налиты свинцом*), ибо, согласно Э., *Господь Бог изощрен, но не злобен*. Несмотря на то, что вероятностная интерпретация квантовой механики и принцип неопределенности Гейзенберга получили широкое распространение, Э. (совместно с М.Планком и Шредингером), согласно детерминизма и причинности классической механики, выступал против основной идеи современной ему статистической квантовой теории, мотивируя это (в 1955) приближенным характером и неполнотой квантовой теории: *Я не верю, что такая фундаментальная концепция может стать надлежащей основой для всей физики в целом... Я твердо убежден, что существенно статистический характер современной квантовой теории следует приписать исключительно тому, что эта теория оперирует с неполным описанием физических систем*. В принстонский период (1933-1955) своей деятельности Э. занимался, в основном, развитием ОТО в направлении решения проблем космологии и единой теории поля. Однако его работы в направлении объединения поля электромагнитного с метрикой пространства-времени (аналогично полю гравитационному) оказались безуспешны.... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ (18791955)

— физик-теоретик, создатель теории относительности, «великий преобразователь естествознания» (Ленин В. И. ПСС, т. 45, с. 29). Открытия Э. легли в основу новой, квантово-релятивист. картины мира, имеющей огромное материалистич. мировоззренч. значение. Э., будучи стихийным материалистом, отвергал все религ.. догматы, однако в своих произведениях и высказываниях употреблял такие термины, как «космическая религия», под к-рой понимал восхищение стройностью и красотой законов природы, «религиозность», к-рую трактовал как стремление сверхличного характера. Происхождение религии Э. связывал с чувством страха, не видел соц. корней религии в бурж. об-ве.... смотреть

ЭЙНШТЕЙН АЛЬБЕРТ БИОГРАФИЯ

Эйнштейн Альберт - биография (Einstein) Эйнштейн Альберт (Einstein, Albert) (1879 - 1955) Эйнштейн Альберт (Einstein). Биография Немецкий физик, создат... смотреть

ЭЙНШТЕЙН АЛЬФРЕД

Эйнштейн (Einstein) Альфред (30.12.1880, Мюнхен, ‒ 13.2.1952, Эль-Серрито, Калифорния), немецкий музыковед. Выступал как музыкальный критик в Мюнхене и... смотреть

ЭЙНШТЕЙН АЛЬФРЕД (18801952)

ЭЙНШТЕЙН Альфред (1880-1952), музыковед. Двоюродный брат А. Эйнштейна. В 1933 эмигрировал, с 1939 жил в США. Исследователь главным образом итальянской и немецкой музыки 16-18 вв. Редактор 9-11-го издания Музыкального словаря Х. Римана (1919-29), 3-го издания Указателя сочинений В. А. Моцарта (1937).... смотреть

ЭЙНШТЕЙН АЛЬФРЕД (18801952)

ЭЙНШТЕЙН Альфред (1880-1952) , музыковед. Двоюродный брат А. Эйнштейна. В 1933 эмигрировал, с 1939 жил в США. Исследователь главным образом итальянской и немецкой музыки 16-18 вв. Редактор 9-11-го издания Музыкального словаря Х. Римана (1919-29), 3-го издания Указателя сочинений В. А. Моцарта (1937).... смотреть

ЭЙНШТЕЙН В ПОРУ РАБОТЫ В КАКОМТО УЧРЕЖДЕНИИ

   в патентном бюро в Берне:   ஐ "У него было пухлое лицо состарившегося ребенка, и он так же не походил на создателя высоких абстракций, как Эйнштейн ... смотреть

ЭЙНШТЕЙН (ФИЗИЧ.)

Эйнштейн, единица энергии электромагнитного излучения оптического диапазона; применяется в фотохимии, равна NAhn, где NA ‒ Авогадро число и hn ‒ энерги... смотреть

T: 249